Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Describes spatial patterns of categorical raster data for any defined regular and irregular areas. Patterns are described quantitatively using built-in signatures based on co-occurrence matrices but also allows for any user-defined functions. It enables spatial analysis such as search, change detection, and clustering to be performed on spatial patterns (Nowosad (2021) <doi:10.1007/s10980-020-01135-0>).
This package provides a modified function bic.glm of the BMA package that can be applied to multinomial logit (MNL) data. The data is converted to binary logit using the Begg & Gray approximation. The package also contains functions for maximum likelihood estimation of MNL.
Several functions for maximum likelihood estimation of various univariate and multivariate distributions. The list includes more than 100 functions for univariate continuous and discrete distributions, distributions that lie on the real line, the positive line, interval restricted, circular distributions. Further, multivariate continuous and discrete distributions, distributions for compositional and directional data, etc. Some references include Johnson N. L., Kotz S. and Balakrishnan N. (1994). "Continuous Univariate Distributions, Volume 1" <ISBN:978-0-471-58495-7>, Johnson, Norman L. Kemp, Adrianne W. Kotz, Samuel (2005). "Univariate Discrete Distributions". <ISBN:978-0-471-71580-1> and Mardia, K. V. and Jupp, P. E. (2000). "Directional Statistics". <ISBN:978-0-471-95333-3>.
Implemented are various tests for semi-parametric repeated measures and general MANOVA designs that do neither assume multivariate normality nor covariance homogeneity, i.e., the procedures are applicable for a wide range of general multivariate factorial designs. In addition to asymptotic inference methods, novel bootstrap and permutation approaches are implemented as well. These provide more accurate results in case of small to moderate sample sizes. Furthermore, post-hoc comparisons are provided for the multivariate analyses. Friedrich, S., Konietschke, F. and Pauly, M. (2019) <doi:10.32614/RJ-2019-051>.
The Iterative Proportional Fitting (IPF) algorithm operates on count data. This package offers implementations for several algorithms that extend this to nested structures: parent and child items for both of which constraints can be provided. The fitting algorithms include Iterative Proportional Updating <https://trid.trb.org/view/881554>, Hierarchical IPF <doi:10.3929/ethz-a-006620748>, Entropy Optimization <https://trid.trb.org/view/881144>, and Generalized Raking <doi:10.2307/2290793>. Additionally, a number of replication methods is also provided such as Truncate, replicate, sample <doi:10.1016/j.compenvurbsys.2013.03.004>.
Allows users familiar with MATLAB to use MATLAB-named functions in R. Several basic MATLAB functions are written in this package to mimic the behavior of their original counterparts, with more to come as this package grows.
This package provides tools to help convert credit risk data at two timepoints into traditional credit state migration (aka, "transition") matrices. At a higher level, migrate is intended to help an analyst understand how risk moved in their credit portfolio over a time interval. References to this methodology include: 1. Schuermann, T. (2008) <doi:10.1002/9780470061596.risk0409>. 2. Perederiy, V. (2017) <doi:10.48550/arXiv.1708.00062>.
Takes a .state file generated by IQ-TREE as an input and, for each ancestral node present in the file, generates a FASTA-formatted maximum likelihood (ML) sequence as well as an âAltAllâ sequence in which uncertain sites, determined by the two parameters thres_1 and thres_2, have the maximum likelihood state swapped with the next most likely state as described in Geeta N. Eick, Jamie T. Bridgham, Douglas P. Anderson, Michael J. Harms, and Joseph W. Thornton (2017), "Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty" <doi:10.1093/molbev/msw223>.
Stability based methods for model order selection in clustering problems (Valentini, G (2007), <doi:10.1093/bioinformatics/btl600>). Using multiple perturbations of the data the stability of clustering solutions is assessed. Different perturbations may be used: resampling techniques, random projections and noise injection. Stability measures for the estimate of clustering solutions and statistical tests to assess their significance are provided.
This package performs Bayesian meta-analysis, meta-regression and model-based meta-analysis using Stan'. Includes binomial-normal hierarchical models and option to use weakly informative priors for the heterogeneity parameter and the treatment effect parameter which are described in Guenhan, Roever, and Friede (2020) <doi:10.1002/jrsm.1370>.
Computes matching algorithms quickly using Rcpp. Implements the Gale-Shapley Algorithm to compute the stable matching for two-sided markets, such as the stable marriage problem and the college-admissions problem. Implements Irving's Algorithm for the stable roommate problem. Implements the top trading cycle algorithm for the indivisible goods trading problem.
This package provides functions to prepare time priors for MCMCtree analyses in the PAML software from Yang (2007)<doi:10.1093/molbev/msm088> and plot time-scaled phylogenies from any Bayesian divergence time analysis. Most time-calibrated node prior distributions require user-specified parameters. The package provides functions to refine these parameters, so that the resulting prior distributions accurately reflect confidence in known, usually fossil, time information. These functions also enable users to visualise distributions and write MCMCtree ready input files. Additionally, the package supplies flexible functions to visualise age uncertainty on a plotted tree with using node bars, using branch widths proportional to the age uncertainty, or by plotting the full posterior distributions on nodes. Time-scaled phylogenetic plots can be visualised with absolute and geological timescales . All plotting functions are applicable with output from any Bayesian software, not just MCMCtree'.
Fit (by Maximum Likelihood or MCMC/Bayesian), simulate, and forecast various Markov-Switching GARCH models as described in Ardia et al. (2019) <doi:10.18637/jss.v091.i04>.
This package provides a collection of functions for computations and visualizations of microbial pan-genomes.
Offers a general framework of multivariate mixed-effects models for the joint analysis of multiple correlated outcomes with clustered data structures and potential missingness proposed by Wang et al. (2018) <doi:10.1093/biostatistics/kxy022>. The missingness of outcome values may depend on the values themselves (missing not at random and non-ignorable), or may depend on only the covariates (missing at random and ignorable), or both. This package provides functions for two models: 1) mvMISE_b() allows correlated outcome-specific random intercepts with a factor-analytic structure, and 2) mvMISE_e() allows the correlated outcome-specific error terms with a graphical lasso penalty on the error precision matrix. Both functions are motivated by the multivariate data analysis on data with clustered structures from labelling-based quantitative proteomic studies. These models and functions can also be applied to univariate and multivariate analyses of clustered data with balanced or unbalanced design and no missingness.
Comprehensively identifying states and state-like actors is difficult. This package provides data on states and state-like entities in the international system across time. The package combines and cross-references several existing datasets consistent with the aims and functions of the manydata package. It also includes functions for identifying state references in text, and for generating fictional state names.
This package provides the mean to parse and render markdown text with grid along with facilities to define the styling of the text.
Estimation of interaction (i.e., moderation) effects between latent variables in structural equation models (SEM). The supported methods are: The constrained approach (Algina & Moulder, 2001). The unconstrained approach (Marsh et al., 2004). The residual centering approach (Little et al., 2006). The double centering approach (Lin et al., 2010). The latent moderated structural equations (LMS) approach (Klein & Moosbrugger, 2000). The quasi-maximum likelihood (QML) approach (Klein & Muthén, 2007) The constrained- unconstrained, residual- and double centering- approaches are estimated via lavaan (Rosseel, 2012), whilst the LMS- and QML- approaches are estimated via modsem it self. Alternatively model can be estimated via Mplus (Muthén & Muthén, 1998-2017). References: Algina, J., & Moulder, B. C. (2001). <doi:10.1207/S15328007SEM0801_3>. "A note on estimating the Jöreskog-Yang model for latent variable interaction using LISREL 8.3." Klein, A., & Moosbrugger, H. (2000). <doi:10.1007/BF02296338>. "Maximum likelihood estimation of latent interaction effects with the LMS method." Klein, A. G., & Muthén, B. O. (2007). <doi:10.1080/00273170701710205>. "Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects." Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). <doi:10.1080/10705511.2010.488999>. "Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies." Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). <doi:10.1207/s15328007sem1304_1>. "On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables." Marsh, H. W., Wen, Z., & Hau, K. T. (2004). <doi:10.1037/1082-989X.9.3.275>. "Structural equation models of latent interactions: evaluation of alternative estimation strategies and indicator construction." Muthén, L.K. and Muthén, B.O. (1998-2017). "'Mplus Userâ s Guide. Eighth Edition." <https://www.statmodel.com/>. Rosseel Y (2012). <doi:10.18637/jss.v048.i02>. "'lavaan': An R Package for Structural Equation Modeling.".
This package provides functions for comparing survival curves using the max-combo test at a single timepoint or repeatedly at successive respective timepoints while controlling type I error (i.e., the group sequential setting), as published by Prior (2020) <doi:10.1177/0962280220931560>. The max-combo test is a generalization of the weighted log-rank test, which itself is a generalization of the log-rank test, which is a commonly used statistical test for comparing survival curves, e.g., during or after a clinical trial as part of an effort to determine if a new drug or therapy is more effective at delaying undesirable outcomes than an established drug or therapy or a placebo.
This package provides sample data sets that are used in statistics and data science courses at the Münster School of Business. The datasets refer to different business topics but also other domains, e.g. sports, traffic, etc.
Analyzes production and dispersal of seeds dispersed from trees and recovered in seed traps. Motivated by long-term inventory plots where seed collections are used to infer seed production by each individual plant.
This package provides functions to interpolate irregularly and regularly spaced data using Multilevel B-spline Approximation (MBA). Functions call portions of the SINTEF Multilevel B-spline Library written by à yvind Hjelle which implements methods developed by Lee, Wolberg and Shin (1997; <doi:10.1109/2945.620490>).
Framework for the simulation framework for the simulation of complex breeding programs and compare their economic and genetic impact. Associated publication: Pook et al. (2020) <doi:10.1534/g3.120.401193>.
This package provides functions similar to the SAS macros previously provided to accompany Collins, Dziak, and Li (2009) <DOI:10.1037/a0015826> and Dziak, Nahum-Shani, and Collins (2012) <DOI:10.1037/a0026972>, papers which outline practical benefits and challenges of factorial and fractional factorial experiments for scientists interested in developing biological and/or behavioral interventions, especially in the context of the multiphase optimization strategy (see Collins, Kugler & Gwadz 2016) <DOI:10.1007/s10461-015-1145-4>. The package currently contains three functions. First, RelativeCosts1() draws a graph of the relative cost of complete and reduced factorial designs versus other alternatives. Second, RandomAssignmentGenerator() returns a dataframe which contains a list of random numbers that can be used to conveniently assign participants to conditions in an experiment with many conditions. Third, FactorialPowerPlan() estimates the power, detectable effect size, or required sample size of a factorial or fractional factorial experiment, for main effects or interactions, given several possible choices of effect size metric, and allowing pretests and clustering.