Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of survival and reproduction Data. Among others, it facilitates Bayesian inference of the general unified threshold model of survival (GUTS). See our companion paper Baudrot and Charles (2021) <doi:10.21105/joss.03200>, as well as complementary details in Baudrot et al. (2018) <doi:10.1021/acs.est.7b05464> and Delignette-Muller et al. (2017) <doi:10.1021/acs.est.6b05326>.
You can use the set of wrappers for analytical schemata to reduce the effort in writing machine-readable data. The set of all-in-one wrappers will cover widely used functions from data analysis packages.
Performance measures and scores for statistical classification such as accuracy, sensitivity, specificity, recall, similarity coefficients, AUC, GINI index, Brier score and many more. Calculation of optimal cut-offs and decision stumps (Iba and Langley (1991), <doi:10.1016/B978-1-55860-247-2.50035-8>) for all implemented performance measures. Hosmer-Lemeshow goodness of fit tests (Lemeshow and Hosmer (1982), <doi:10.1093/oxfordjournals.aje.a113284>; Hosmer et al (1997), <doi:10.1002/(SICI)1097-0258(19970515)16:9%3C965::AID-SIM509%3E3.0.CO;2-O>). Statistical and epidemiological risk measures such as relative risk, odds ratio, number needed to treat (Porta (2014), <doi:10.1093%2Facref%2F9780199976720.001.0001>).
Estimation of treatment hierarchies in network meta-analysis using a novel frequentist approach based on treatment choice criteria (TCC) and probabilistic ranking models, as described by Evrenoglou et al. (2024) <DOI:10.48550/arXiv.2406.10612>. The TCC are defined using a rule based on the smallest worthwhile difference (SWD). Using the defined TCC, the NMA estimates (i.e., treatment effects and standard errors) are first transformed into treatment preferences, indicating either a treatment preference (e.g., treatment A > treatment B) or a tie (treatment A = treatment B). These treatment preferences are then synthesized using a probabilistic ranking model, which estimates the latent ability parameter of each treatment and produces the final treatment hierarchy. This parameter represents each treatments ability to outperform all the other competing treatments in the network. Here the terms ability to outperform indicates the propensity of each treatment to yield clinically important and beneficial effects when compared to all the other treatments in the network. Consequently, larger ability estimates indicate higher positions in the ranking list.
This package provides a collection of miscellaneous helper function for running multilevel/mixed models in lme4'. This package aims to provide functions to compute common tasks when estimating multilevel models such as computing the intraclass correlation and design effect, centering variables, estimating the proportion of variance explained at each level, pseudo-R squared, random intercept and slope reliabilities, tests for homogeneity of variance at level-1, and cluster robust and bootstrap standard errors. The tests and statistics reported in the package are from Raudenbush & Bryk (2002, ISBN:9780761919049), Hox et al. (2018, ISBN:9781138121362), and Snijders & Bosker (2012, ISBN:9781849202015).
For a given test market find the best control markets using time series matching and analyze the impact of an intervention. The intervention could be a marketing event or some other local business tactic that is being tested. The workflow implemented in the Market Matching package utilizes dynamic time warping (the dtw package) to do the matching and the CausalImpact package to analyze the causal impact. In fact, this package can be considered a "workflow wrapper" for those two packages. In addition, if you don't have a chosen set of test markets to match, the Market Matching package can provide suggested test/control market pairs and pseudo prospective power analysis (measuring causal impact at fake interventions).
This package provides a variety of association tests for microbiome data analysis including Quasi-Conditional Association Tests (QCAT) described in Tang Z.-Z. et al.(2017) <doi:10.1093/bioinformatics/btw804> and Zero-Inflated Generalized Dirichlet Multinomial (ZIGDM) tests described in Tang Z.-Z. & Chen G. (2017, submitted).
The midasml package implements estimation and prediction methods for high-dimensional mixed-frequency (MIDAS) time-series and panel data regression models. The regularized MIDAS models are estimated using orthogonal (e.g. Legendre) polynomials and sparse-group LASSO (sg-LASSO) estimator. For more information on the midasml approach see Babii, Ghysels, and Striaukas (2021, JBES forthcoming) <doi:10.1080/07350015.2021.1899933>. The package is equipped with the fast implementation of the sg-LASSO estimator by means of proximal block coordinate descent. High-dimensional mixed frequency time-series data can also be easily manipulated with functions provided in the package.
Calculates mean cumulative count (MCC) to estimate the expected cumulative number of recurrent events per person over time in the presence of competing risks and censoring. Implements both the Dong-Yasui equation method and sum of cumulative incidence method described in Dong, et al. (2015) <doi:10.1093/aje/kwu289>. Supports inverse probability weighting for causal inference as outlined in Gaber, et al. (2023) <doi:10.1093/aje/kwad031>. Provides S3 methods for printing, summarizing, plotting, and extracting results. Handles grouped analyses and integrates with ggplot2 <https://ggplot2.tidyverse.org/> for visualization.
Parametric modeling of M-quantile regression coefficient functions.
We introduce a generalized factor model designed to jointly analyze high-dimensional multi-modality data from multiple studies by extracting study-shared and specified factors. Our factor models account for heterogeneous noises and overdispersion among modality variables with augmented covariates. We propose an efficient and speedy variational estimation procedure for estimating model parameters, along with a novel criterion for selecting the optimal number of factors. More details can be referred to Liu et al. (2025) <doi:10.48550/arXiv.2507.09889>.
This package provides a framework package aimed to provide standardized computational environment for specialist work via object classes to represent the data coded by samples, taxa and segments (i.e. subpopulations, repeated measures). It supports easy processing of the data along with cross tabulation and relational data tables for samples and taxa. An object of class `mefa is a project specific compendium of the data and can be easily used in further analyses. Methods are provided for extraction, aggregation, conversion, plotting, summary and reporting of `mefa objects. Reports can be generated in plain text or LaTeX format. Vignette contains worked examples.
This package provides methods for color labeling, calculation of eigengenes, merging of closely related modules.
This package provides a new method to implement clustering from multiple modality data of certain samples, the function M2SMF() jointly factorizes multiple similarity matrices into a shared sub-matrix and several modality private sub-matrices, which is further used for clustering. Along with this method, we also provide function to calculate the similarity matrix and function to evaluate the best cluster number from the original data.
Estimates risk as a function of a marker by integrating over other covariates in a conditional risk model.
Dataset and functions from the meta-analysis published in Medicine & Science in Sports & Exercise. It contains all the data and functions to reproduce the analysis. "Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: A Meta-analysis". Felipe Mattioni Maturana, Peter Martus, Stephan Zipfel, Andreas M NieĆ (2020) <doi:10.1249/MSS.0000000000002506>.
Extended tools for analyzing telemetry data using generalized hidden Markov models. Features of momentuHMM (pronounced ``momentum'') include data pre-processing and visualization, fitting HMMs to location and auxiliary biotelemetry or environmental data, biased and correlated random walk movement models, hierarchical HMMs, multiple imputation for incorporating location measurement error and missing data, user-specified design matrices and constraints for covariate modelling of parameters, random effects, decoding of the state process, visualization of fitted models, model checking and selection, and simulation. See McClintock and Michelot (2018) <doi:10.1111/2041-210X.12995>.
Implementation of the methodology of Aleshin-Guendel & Sadinle (2022) <doi:10.1080/01621459.2021.2013242>. It handles the general problem of multifile record linkage and duplicate detection, where any number of files are to be linked, and any of the files may have duplicates.
This package provides tools for computing Monte Carlo standard errors (MCSE) in Markov chain Monte Carlo (MCMC) settings (survey in <doi:10.1201/b10905>, Chapter 7). MCSE computation for expectation and quantile estimators is supported as well as multivariate estimations. The package also provides functions for computing effective sample size and for plotting Monte Carlo estimates versus sample size.
This package implements state-of-the-art block bootstrap methods for extreme value statistics based on block maxima. Includes disjoint blocks, sliding blocks, relying on a circular transformation of blocks. Fast C++ backends (via Rcpp') ensure scalability for large time series.
Estimates the precision of transdimensional Markov chain Monte Carlo (MCMC) output, which is often used for Bayesian analysis of models with different dimensionality (e.g., model selection). Transdimensional MCMC (e.g., reversible jump MCMC) relies on sampling a discrete model-indicator variable to estimate the posterior model probabilities. If only few switches occur between the models, precision may be low and assessment based on the assumption of independent samples misleading. Based on the observed transition matrix of the indicator variable, the method of Heck, Overstall, Gronau, & Wagenmakers (2019, Statistics & Computing, 29, 631-643) <doi:10.1007/s11222-018-9828-0> draws posterior samples of the stationary distribution to (a) assess the uncertainty in the estimated posterior model probabilities and (b) estimate the effective sample size of the MCMC output.
Pseudo-random number generation for 11 multivariate distributions: Normal, t, Uniform, Bernoulli, Hypergeometric, Beta (Dirichlet), Multinomial, Dirichlet-Multinomial, Laplace, Wishart, and Inverted Wishart. The details of the method are explained in Demirtas (2004) <DOI:10.22237/jmasm/1099268340>.
This package provides tools for spectral clustering of weighted directed networks using motif adjacency matrices. Methods perform well on large and sparse networks, and random sampling methods for generating weighted directed networks are also provided. Based on methodology detailed in Underwood, Elliott and Cucuringu (2020) <arXiv:2004.01293>.
Hierarchical workspace tree, code editing and backup, easy package prep, editing of packages while loaded, per-object lazy-loading, easy documentation, macro functions, and miscellaneous utilities. Needed by debug package.