Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An S4 update of the mefa package using sparse matrices for enhanced efficiency. Sparse array-like objects are supported via lists of sparse matrices.
This package provides an interface to the Maxar Geospatial Platform (MGP) Application Programming Interface. <https://www.maxar.com/maxar-geospatial-platform> It facilitates imagery searches using the MGP Streaming Application Programming Interface via the Web Feature Service (WFS) method, and supports image downloads through Web Map Service (WMS) and Web Map Tile Service (WMTS) Open Geospatial Consortium (OGC) methods. Additionally, it integrates with the Maxar Geospatial Platform Basemaps Application Programming Interface for accessing Maxar basemaps imagery and seamlines. The package also offers seamless integration with the Maxar Geospatial Platform Discovery Application Programming Interface, allowing users to search, filter, and sort Maxar content, while retrieving detailed metadata in formats like SpatioTemporal Asset Catalog (STAC) and GeoJSON.
Transfer learning, as a prevailing technique in computer sciences, aims to improve the performance of a target model by leveraging auxiliary information from heterogeneous source data. We provide novel tools for multi-source transfer learning under statistical models based on model averaging strategies, including linear regression models, partially linear models. Unlike existing transfer learning approaches, this method integrates the auxiliary information through data-driven weight assignments to avoid negative transfer. This is the first package for transfer learning based on the optimal model averaging frameworks, providing efficient implementations for practitioners in multi-source data modeling. The details are described in Hu and Zhang (2023) <https://jmlr.org/papers/v24/23-0030.html>.
Some enhancements, extensions and additions to the facilities of the recommended MASS package that are useful mainly for teaching purposes, with more convenient default settings and user interfaces. Key functions from MASS are imported and re-exported to avoid masking conflicts. In addition we provide some additional functions mainly used to illustrate coding paradigms and techniques, such as Gramm-Schmidt orthogonalisation and generalised eigenvalue problems.
Simulates respiratory virus epidemics using meta-population compartmental models following Fadikar et. al. (2025) <doi:10.1101/2025.05.05.25327021>. MetaRVM implements a stochastic SEIRD (Susceptible-Exposed-Infected-Recovered-Dead) framework with demographic stratification by age, race, and geographic zones. It supports complex epidemiological scenarios including asymptomatic and presymptomatic transmission, hospitalization dynamics, vaccination schedules, and time-varying contact patterns via mixing matrices.
Power of non-parametric Mann-Kendall test and Spearmanâ s Rho test is highly influenced by serially correlated data. To address this issue, trend tests may be applied on the modified versions of the time series data by Block Bootstrapping (BBS), Prewhitening (PW) , Trend Free Prewhitening (TFPW), Bias Corrected Prewhitening and Variance Correction Approach by calculating effective sample size. Mann, H. B. (1945).<doi:10.1017/CBO9781107415324.004>. Kendall, M. (1975). Multivariate analysis. Charles Griffin&Company Ltd,. sen, P. K. (1968).<doi:10.2307/2285891>. à nöz, B., & Bayazit, M. (2012) <doi:10.1002/hyp.8438>. Hamed, K. H. (2009).<doi:10.1016/j.jhydrol.2009.01.040>. Yue, S., & Wang, C. Y. (2002) <doi:10.1029/2001WR000861>. Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002) <doi:10.1002/hyp.1095>. Hamed, K. H., & Ramachandra Rao, A. (1998) <doi:10.1016/S0022-1694(97)00125-X>. Yue, S., & Wang, C. Y. (2004) <doi:10.1023/B:WARM.0000043140.61082.60>.
Algorithms compute robust estimators for loss functions in the concave convex (CC) family by the iteratively reweighted convex optimization (IRCO), an extension of the iteratively reweighted least squares (IRLS). The IRCO reduces the weight of the observation that leads to a large loss; it also provides weights to help identify outliers. Applications include robust (penalized) generalized linear models and robust support vector machines. The package also contains penalized Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial regression models and robust models with non-convex loss functions. Wang et al. (2014) <doi:10.1002/sim.6314>, Wang et al. (2015) <doi:10.1002/bimj.201400143>, Wang et al. (2016) <doi:10.1177/0962280214530608>, Wang (2021) <doi:10.1007/s11749-021-00770-2>, Wang (2024) <doi:10.1111/anzs.12409>.
Agricultural data for 1888-2021 from the Morrow Plots at the University of Illinois. The world's second oldest ongoing agricultural experiment, the Morrow Plots measure the impact of crop rotation and fertility treatments on corn yields. The data includes planting information and annual yield measures for corn grown continuously and in rotation with other crops, in treated and untreated soil.
Calculates k-best solutions and costs for an assignment problem following the method outlined in Murty (1968) <doi:10.1287/opre.16.3.682>.
Data sets in the book entitled "Multivariate Statistical Methods with R Applications", H.Bulut (2018). The book was published in Turkish and the original name of this book will be "R Uygulamalari ile Cok Degiskenli Istatistiksel Yontemler".
This package provides functionality to generate compound optimal designs for targeting the multiple experimental objectives directly, ensuring that the full set of research questions is answered as economically as possible. Designs can be found using point or coordinate exchange algorithms combining estimation, inference and lack-of-fit criteria that account for model inadequacy. Details and examples are given by Koutra et al. (2024) <doi:10.48550/arXiv.2412.17158>.
Multiply robust estimation for population mean (Han and Wang 2013) <doi:10.1093/biomet/ass087>, regression analysis (Han 2014) <doi:10.1080/01621459.2014.880058> (Han 2016) <doi:10.1111/sjos.12177> and quantile regression (Han et al. 2019) <doi:10.1111/rssb.12309>.
Quantify the causal effect of a binary exposure on a binary outcome with adjustment for multiple biases. The functions can simultaneously adjust for any combination of uncontrolled confounding, exposure/outcome misclassification, and selection bias. The underlying method generalizes the concept of combining inverse probability of selection weighting with predictive value weighting. Simultaneous multi-bias analysis can be used to enhance the validity and transparency of real-world evidence obtained from observational, longitudinal studies. Based on the work from Paul Brendel, Aracelis Torres, and Onyebuchi Arah (2023) <doi:10.1093/ije/dyad001>.
This package provides a hybrid of the K-means algorithm and a Majorization-Minimization method to introduce a robust clustering. The reference paper is: Julien Mairal, (2015) <doi:10.1137/140957639>. The two most important functions in package MajKMeans are cluster_km() and cluster_MajKm(). cluster_km() clusters data without Majorization-Minimization and cluster_MajKm() clusters data with Majorization-Minimization method. Both of these functions calculate the sum of squares (SS) of clustering.
Estimation of treatment hierarchies in network meta-analysis using a novel frequentist approach based on treatment choice criteria (TCC) and probabilistic ranking models, as described by Evrenoglou et al. (2024) <DOI:10.48550/arXiv.2406.10612>. The TCC are defined using a rule based on the smallest worthwhile difference (SWD). Using the defined TCC, the NMA estimates (i.e., treatment effects and standard errors) are first transformed into treatment preferences, indicating either a treatment preference (e.g., treatment A > treatment B) or a tie (treatment A = treatment B). These treatment preferences are then synthesized using a probabilistic ranking model, which estimates the latent ability parameter of each treatment and produces the final treatment hierarchy. This parameter represents each treatments ability to outperform all the other competing treatments in the network. Here the terms ability to outperform indicates the propensity of each treatment to yield clinically important and beneficial effects when compared to all the other treatments in the network. Consequently, larger ability estimates indicate higher positions in the ranking list.
The Matthews correlation coefficient (MCC) score is calculated (Matthews BW (1975) <DOI:10.1016/0005-2795(75)90109-9>).
Distance between multivariate Cauchy distributions, as presented by N. Bouhlel and D. Rousseau (2022) <doi:10.3390/e24060838>. Manipulation of multivariate Cauchy distributions.
Finds the Maximum Likelihood (ML) Estimate of the mean vector and variance-covariance matrix for multivariate normal data with missing values.
This package provides functions to calculate Unique Trait Combinations (UTC) and scaled Unique Trait Combinations (sUTC) as measures of multivariate richness. The package can also calculate beta-diversity for trait richness and can partition this into nestedness-related and turnover components. The code will also calculate several measures of overlap. See Keyel and Wiegand (2016) <doi:10.1111/2041-210X.12558> for more details.
This package performs Bayesian meta-analysis, meta-regression and model-based meta-analysis using Stan'. Includes binomial-normal hierarchical models and option to use weakly informative priors for the heterogeneity parameter and the treatment effect parameter which are described in Guenhan, Roever, and Friede (2020) <doi:10.1002/jrsm.1370>.
This is a shiny module that presents a file picker user interface to get an Excel file name, and reads the Excel sheets using readxl package and returns the resulting sheet(s) as a vector and data in dataframe(s).
Correlation coefficients for multivariate data, namely the squared correlation coefficient and the RV coefficient (multivariate generalization of the squared Pearson correlation coefficient). References include Mardia K.V., Kent J.T. and Bibby J.M. (1979). "Multivariate Analysis". ISBN: 978-0124712522. London: Academic Press.
Perform multivariate modeling of evolved traits, with special attention to understanding the interplay of the multi-factorial determinants of their origins in complex ecological settings (Stephens, 2007 <doi:10.1016/j.tree.2006.12.003>). This software primarily concentrates on phylogenetic regression analysis, enabling implementation of tree transformation averaging and visualization functionality. Functions additionally support information theoretic approaches (Grueber, 2011 <doi:10.1111/j.1420-9101.2010.02210.x>; Garamszegi, 2011 <doi:10.1007/s00265-010-1028-7>) such as model averaging and selection of phylogenetic models. Accessory functions are also implemented for coef standardization (Cade 2015), selection uncertainty, and variable importance (Burnham & Anderson 2000). There are other numerous functions for visualizing confounded variables, plotting phylogenetic trees, as well as reporting and exporting modeling results. Lastly, as challenges to ecology are inherently multifarious, and therefore often multi-dataset, this package features several functions to support the identification, interpolation, merging, and updating of missing data and outdated nomenclature.
Generates Raven like matrices according to different rules and the response list associated to the matrix. The package can generate matrices composed of 4 or 9 cells, along with a response list of 11 elements (the correct response + 10 incorrect responses). The matrices can be generated according to both logical rules (i.e., the relationships between the elements in the matrix are manipulated to create the matrix) and visual-spatial rules (i.e., the visual or spatial characteristics of the elements are manipulated to generate the matrix). The graphical elements of this package are based on the DescTools package. This package has been developed within the PRIN2020 Project (Prot. 20209WKCLL) titled "Computerized, Adaptive and Personalized Assessment of Executive Functions and Fluid Intelligence" and founded by the Italian Ministry of Education and Research.