Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimate and test inter-generational social mobility effect on an outcome with cross-sectional or longitudinal data.
This package provides functions to compute and visualize movement-based kernel density estimates (MKDEs) for animal utilization distributions in 2 or 3 spatial dimensions.
This package provides functions for the robust estimation of parametric families of copulas using minimization of the Maximum Mean Discrepancy, following the article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2022) <doi:10.1080/01621459.2021.2024836>.
Efficient procedures for computing a new Multi-Class Sparse Discriminant Analysis method that estimates all discriminant directions simultaneously. It is an implementation of the work proposed by Mai, Q., Yang, Y., and Zou, H. (2019) <doi:10.5705/ss.202016.0117>.
The mFilter package implements several time series filters useful for smoothing and extracting trend and cyclical components of a time series. The routines are commonly used in economics and finance, however they should also be interest to other areas. Currently, Christiano-Fitzgerald, Baxter-King, Hodrick-Prescott, Butterworth, and trigonometric regression filters are included in the package.
This package provides a collection of multivariate nonparametric methods, selected in part to support an MS level course in nonparametric statistical methods. Methods include adjustments for multiple comparisons, implementation of multivariate Mann-Whitney-Wilcoxon testing, inversion of these tests to produce a confidence region, some permutation tests for linear models, and some algorithms for calculating exact probabilities associated with one- and two- stage testing involving Mann-Whitney-Wilcoxon statistics. Supported by grant NSF DMS 1712839. See Kolassa and Seifu (2013) <doi:10.1016/j.acra.2013.03.006>.
Interface to Apache Commons Email to send emails from R.
Integrates fairness auditing and bias mitigation methods for the mlr3 ecosystem. This includes fairness metrics, reporting tools, visualizations and bias mitigation techniques such as "Reweighing" described in Kamiran, Calders (2012) <doi:10.1007/s10115-011-0463-8> and "Equalized Odds" described in Hardt et al. (2016) <https://papers.nips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf>. Integration with mlr3 allows for auditing of ML models as well as convenient joint tuning of machine learning algorithms and debiasing methods.
Estimate genetic linkage maps for markers on a single chromosome (or in a single linkage group) from pairwise recombination fractions or intermarker distances using weighted metric multidimensional scaling. The methods are suitable for autotetraploid as well as diploid populations. Options for assessing the fit to a known map are also provided. Methods are discussed in detail in Preedy and Hackett (2016) <doi:10.1007/s00122-016-2761-8>.
Evaluate whether a microbiome sample is a mixture of two samples, by fitting a model for the number of read counts as a function of single nucleotide polymorphism (SNP) allele and the genotypes of two potential source samples. Lobo et al. (2021) <doi:10.1093/g3journal/jkab308>.
Implementation of the mid-n algorithms presented in Wellek S (2015) <DOI:10.1111/stan.12063> Statistica Neerlandica 69, 358-373 for exact sample size calculation for superiority trials with binary outcome.
To calculate the Minimal Clinically Important Difference by applying the Anchor-based method and the Response shift effect by applying the Then-Test method.
This package implements a methodology for the design and analysis of dose-response studies that combines aspects of multiple comparison procedures and modeling approaches (Bretz, Pinheiro and Branson, 2005, Biometrics 61, 738-748, <doi: 10.1111/j.1541-0420.2005.00344.x>). The package provides tools for the analysis of dose finding trials as well as a variety of tools necessary to plan a trial to be conducted with the MCP-Mod methodology. Please note: The MCPMod package will not be further developed, all future development of the MCP-Mod methodology will be done in the DoseFinding R-package.
Datasets and wrapper functions for tidyverse-friendly introductory linear regression, used in "Statistical Inference via Data Science: A ModernDive into R and the Tidyverse" available at <https://moderndive.com/>.
Analyse, plot, and tabulate antimicrobial minimum inhibitory concentration (MIC) data. Validate the results of an MIC experiment by comparing observed MIC values to a gold standard assay, in line with standards from the International Organization for Standardization (2021) <https://www.iso.org/standard/79377.html>.
Data sets and scripts for Modeling Psychophysical Data in R (Springer).
Most multilevel methodologies can only model macro-micro multilevel situations in an unbiased way, wherein group-level predictors (e.g., city temperature) are used to predict an individual-level outcome variable (e.g., citizen personality). In contrast, this R package enables researchers to model micro-macro situations, wherein individual-level (micro) predictors (and other group-level predictors) are used to predict a group-level (macro) outcome variable in an unbiased way.
This package provides a PC Algorithm with the Principle of Mendelian Randomization. This package implements the MRPC (PC with the principle of Mendelian randomization) algorithm to infer causal graphs. It also contains functions to simulate data under a certain topology, to visualize a graph in different ways, and to compare graphs and quantify the differences. See Badsha and Fu (2019) <doi:10.3389/fgene.2019.00460>, Badsha, Martin and Fu (2021) <doi:10.3389/fgene.2021.651812>, Kvamme and Badsha, et al. (2025) <doi:10.1093/genetics/iyaf064>.
This package provides a sample size calculator for micro-randomized trials (MRTs) with binary outcomes based on Cohn et al. (2023) <doi:10.1002/sim.9748>. Also provides a power calculator when the sample size is input by the user.
An implementation of the multilevel (also known as mixed or random effects) hidden Markov model using Bayesian estimation in R. The multilevel hidden Markov model (HMM) is a generalization of the well-known hidden Markov model, for the latter see Rabiner (1989) <doi:10.1109/5.18626>. The multilevel HMM is tailored to accommodate (intense) longitudinal data of multiple individuals simultaneously, see e.g., de Haan-Rietdijk et al. <doi:10.1080/00273171.2017.1370364>. Using a multilevel framework, we allow for heterogeneity in the model parameters (transition probability matrix and conditional distribution), while estimating one overall HMM. The model can be fitted on multivariate data with either a categorical, normal, or Poisson distribution, and include individual level covariates (allowing for e.g., group comparisons on model parameters). Parameters are estimated using Bayesian estimation utilizing the forward-backward recursion within a hybrid Metropolis within Gibbs sampler. Missing data (NA) in the dependent variables is accommodated assuming MAR. The package also includes various visualization options, a function to simulate data, and a function to obtain the most likely hidden state sequence for each individual using the Viterbi algorithm.
The utility of this package includes finite mixture modeling and model-based clustering through Manly mixture models by Zhu and Melnykov (2016) <DOI:10.1016/j.csda.2016.01.015>. It also provides capabilities for forward and backward model selection procedures.
Diagnostics of list of codes based on concepts from the domains measurement and observation. This package works for data mapped to the Observational Medical Outcomes Partnership Common Data Model.
This package provides functions and datasets to support Smilde, Næs and Liland (2021, ISBN: 978-1-119-60096-1) "Multiblock Data Fusion in Statistics and Machine Learning - Applications in the Natural and Life Sciences". This implements and imports a large collection of methods for multiblock data analysis with common interfaces, result- and plotting functions, several real data sets and six vignettes covering a range different applications.
Micro simulation model to reproduce natural history of cervical cancer and cost-effectiveness evaluation of prevention strategies. See Georgalis L, de Sanjose S, Esnaola M, Bosch F X, Diaz M (2016) <doi:10.1097/CEJ.0000000000000202> for more details.