Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for fitting mixture distributions to univariate data using expectation maximization, HWHM and other methods. Supports Gaussian, Cauchy, Student's t and von Mises mixtures. For more details see Merkys (2018) <https://www.lvb.lt/permalink/370LABT_NETWORK/1m6ui06/alma9910036312108451>.
This package provides tools for the analysis of population differences using the Major Histocompatibility Complex (MHC) genotypes of samples having a variable number of alleles (1-4) recorded for each individual. A hierarchical Dirichlet-Multinomial model on the genotype counts is used to pool small samples from multiple populations for pairwise tests of equality. Bayesian inference is implemented via the rstan package. Bootstrapped and posterior p-values are provided for chi-squared and likelihood ratio tests of equal genotype probabilities.
Pseudo-random number generation for 11 multivariate distributions: Normal, t, Uniform, Bernoulli, Hypergeometric, Beta (Dirichlet), Multinomial, Dirichlet-Multinomial, Laplace, Wishart, and Inverted Wishart. The details of the method are explained in Demirtas (2004) <DOI:10.22237/jmasm/1099268340>.
An interactive document on the topic of multidimensional scaling and principal component analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyabolar.shinyapps.io/MDS_PCAShiny/>.
This package provides a tool for computing probabilities and other quantities that are relevant in selecting performance criteria for discrete trial training. The main function, miebl(), computes Bayesian and frequentist probabilities and bounds for each of n possible performance criterion choices when attempting to determine a student's true mastery level by counting their number of successful attempts at displaying learning among n trials. The reporting function miebl_re() takes output from miebl() and prepares it into a brief report for a specific criterion. miebl_cp() combines 2 to 5 distributions of true mastery level given performance criterion in one plot for comparison. Ramos (2025) <doi:10.1007/s40617-025-01058-9>.
Easily create functions to map between different sets of values, such as for re-labeling categorical variables.
Facilitates creation and manipulation of metric graphs, such as street or river networks. Further facilitates operations and visualizations of data on metric graphs, and the creation of a large class of random fields and stochastic partial differential equations on such spaces. These random fields can be used for simulation, prediction and inference. In particular, linear mixed effects models including random field components can be fitted to data based on computationally efficient sparse matrix representations. Interfaces to the R packages INLA and inlabru are also provided, which facilitate working with Bayesian statistical models on metric graphs. The main references for the methods are Bolin, Simas and Wallin (2024) <doi:10.3150/23-BEJ1647>, Bolin, Kovacs, Kumar and Simas (2023) <doi:10.1090/mcom/3929> and Bolin, Simas and Wallin (2023) <doi:10.48550/arXiv.2304.03190> and <doi:10.48550/arXiv.2304.10372>.
This package provides a set of functions which use the Expectation Maximisation (EM) algorithm (Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x> Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, 39(1), 1--22) to take a finite mixture model approach to clustering. The package is designed to cluster multivariate data that have categorical and continuous variables and that possibly contain missing values. The method is described in Hunt, L. and Jorgensen, M. (1999) <doi:10.1111/1467-842X.00071> Australian & New Zealand Journal of Statistics 41(2), 153--171 and Hunt, L. and Jorgensen, M. (2003) <doi:10.1016/S0167-9473(02)00190-1> Mixture model clustering for mixed data with missing information, Computational Statistics & Data Analysis, 41(3-4), 429--440.
This package implements three families of parsimonious hidden Markov models (HMMs) for matrix-variate longitudinal data using the Expectation-Conditional Maximization (ECM) algorithm. The package supports matrix-variate normal, t, and contaminated normal distributions as emission distributions. For each hidden state, parsimony is achieved through the eigen-decomposition of the covariance matrices associated with the emission distribution. This approach results in a comprehensive set of 98 parsimonious HMMs for each type of emission distribution. Atypical matrix detection is also supported, utilizing the fitted (heavy-tailed) models.
Aggregates a set of trees with the same leaves to create a consensus tree. The trees are typically obtained via hierarchical clustering, hence the hclust format is used to encode both the aggregated trees and the final consensus tree. The method is exact and proven to be O(nqlog(n)), n being the individuals and q being the number of trees to aggregate.
This package provides utilities for estimation for the multivariate inverse Gaussian distribution of Minami (2003) <doi:10.1081/STA-120025379>, including random vector generation and explicit estimators of the location vector and scale matrix. The package implements kernel density estimators discussed in Belzile, Desgagnes, Genest and Ouimet (2024) <doi:10.48550/arXiv.2209.04757> for smoothing multivariate data on half-spaces.
Analyzes subject-level data in clinical trials using the metalite data structure. The package simplifies the workflow to create production-ready tables, listings, and figures discussed in the subject-level analysis chapters of "R for Clinical Study Reports and Submission" by Zhang et al. (2022) <https://r4csr.org/>.
Matrix-Based Flexible Project Planning. This package models, plans, and schedules flexible, such as agile, extreme, and hybrid project plans. The package contains project planning, scheduling, and risk assessment functions. Kosztyan (2022) <doi:10.1016/j.softx.2022.100973>.
This package provides a bundle of functions for modifying MAESTRA/MAESPA input files,reading output files, and visualizing the stand in 3D. Handy for running sensitivity analyses, scenario analyses, etc.
Uses memory-mapping to enable the random access of elements of a text file of characters separated by characters as if it were a simple R(cpp) matrix.
Enhances mlexperiments <https://CRAN.R-project.org/package=mlexperiments> with additional machine learning ('ML') learners for survival analysis. The package provides R6-based survival learners for the following algorithms: glmnet <https://CRAN.R-project.org/package=glmnet>, ranger <https://CRAN.R-project.org/package=ranger>, xgboost <https://CRAN.R-project.org/package=xgboost>, and rpart <https://CRAN.R-project.org/package=rpart>. These can be used directly with the mlexperiments R package.
Generates mid upper arm circumference (MUAC) and body mass index (BMI) for age z-scores and percentiles based on LMS method for children and adolescents up to 19 years that can be used to assess nutritional and health status and define risk of adverse health events.
Matrix is an universal and sometimes primary object/unit in applied mathematics and statistics. We provide a number of algorithms for selected problems in optimization and statistical inference. For general exposition to the topic with focus on statistical context, see the book by Banerjee and Roy (2014, ISBN:9781420095388).
Comprehensive toolkit for Environmental Phillips Curve analysis featuring multidimensional instrumental variable creation, transfer entropy causal discovery, network analysis, and state-of-the-art econometric methods. Implements geographic, technological, migration, geopolitical, financial, and natural risk instruments with robust diagnostics and visualization. Provides 24 different instrumental variable approaches with empirical validation. Methods based on Phillips (1958) <doi:10.1111/j.1468-0335.1958.tb00003.x>, transfer entropy by Schreiber (2000) <doi:10.1103/PhysRevLett.85.461>, and weak instrument tests by Stock and Yogo (2005) <doi:10.1017/CBO9780511614491.006>.
Calibrate and apply multivariate bias correction algorithms for climate model simulations of multiple climate variables. Three methods described by Cannon (2016) <doi:10.1175/JCLI-D-15-0679.1> and Cannon (2018) <doi:10.1007/s00382-017-3580-6> are implemented â (i) MBC Pearson correlation (MBCp), (ii) MBC rank correlation (MBCr), and (iii) MBC N-dimensional PDF transform (MBCn) â as is the Rank Resampling for Distributions and Dependences (R2D2) method.
This package provides a set of tools for likelihood-based estimation, model selection and testing of two- and three-range shift and migration models for animal movement data as described in Gurarie et al. (2017) <doi: 10.1111/1365-2656.12674>. Provided movement data (X, Y and Time), including irregularly sampled data, functions estimate the time, duration and location of one or two range shifts, as well as the ranging area and auto-correlation structure of the movment. Tests assess, for example, whether the shift was "significant", and whether a two-shift migration was a true return migration.
The companion package provides all original data sets and functions that are used in the book "Model-Based Clustering and Classification for Data Science" by Charles Bouveyron, Gilles Celeux, T. Brendan Murphy and Adrian E. Raftery (2019, ISBN:9781108644181).
This package provides functions provide comprehensive treatments for estimating, inferring, testing and model selecting in linear regression models with structural breaks. The tests, estimation methods, inference and information criteria implemented are discussed in Bai and Perron (1998) "Estimating and Testing Linear Models with Multiple Structural Changes" <doi:10.2307/2998540>.
This grants the functionality of the Maxar Geospatial Platform (MGP) Streaming API. It can search for images using the WFS method. It can Download images using WMS WMTS. It can also Download a full resolution image.