Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fit growth curves to various known microbial growth models automatically to estimate growth parameters. Growth curves can be plotted with their uncertainty band. Growth models are: modified Gompertz model (Zwietering et al. (1990) <doi:10.1128/aem.56.6.1875-1881.1990>), Baranyi model (Baranyi and Roberts (1994) <doi:10.1016/0168-1605%2894%2990157-0>), Rosso model (Rosso et al. (1993) <doi:10.1006/jtbi.1993.1099>) and linear model (Dantigny (2005) <doi:10.1016/j.ijfoodmicro.2004.10.013>).
Clustering via parsimonious Gaussian Mixtures of Experts using the MoEClust models introduced by Murphy and Murphy (2020) <doi:10.1007/s11634-019-00373-8>. This package fits finite Gaussian mixture models with a formula interface for supplying gating and/or expert network covariates using a range of parsimonious covariance parameterisations from the GPCM family via the EM/CEM algorithm. Visualisation of the results of such models using generalised pairs plots and the inclusion of an additional noise component is also facilitated. A greedy forward stepwise search algorithm is provided for identifying the optimal model in terms of the number of components, the GPCM covariance parameterisation, and the subsets of gating/expert network covariates.
The goal of mammalcol is to provide easy access to a meticulously structured dataset of Colombian mammal species in R. The 2025 update includes comprehensive, detailed species accounts, and distribution information.
Compute the coefficient of determination for outcomes in n-dimensions. May be useful for multidimensional predictions (such as a multinomial model) or calculating goodness of fit from latent variable models such as probabilistic topic models like latent Dirichlet allocation or deterministic topic models like latent semantic analysis. Based on Jones (2019) <arXiv:1911.11061>.
This package provides methods for analyzing and using quartets displayed on a collection of gene trees, primarily to make inferences about the species tree or network under the multi-species coalescent model. These include quartet hypothesis tests for the model, as developed by Mitchell et al. (2019) <doi:10.1214/19-EJS1576>, simplex plots of quartet concordance factors as presented by Allman et al. (2020) <doi:10.1101/2020.02.13.948083>, species tree inference methods based on quartet distances of Rhodes (2019) <doi:10.1109/TCBB.2019.2917204> and Yourdkhani and Rhodes (2019) <doi:10.1007/s11538-020-00773-4>, the NANUQ algorithm for inference of level-1 species networks of Allman et al. (2019) <doi:10.1186/s13015-019-0159-2>, the TINNIK algorithm for inference of the tree of blobs of an arbitrary network of Allman et al.(2022) <doi:10.1007/s00285-022-01838-9>, and NANUQ+ routines for resolving multifurcations in the tree of blobs to cycles as in Allman et al.(2024) (forthcoming). Software announcement by Rhodes et al. (2020) <doi:10.1093/bioinformatics/btaa868>.
The Mass Transportation Distance rank histogram was developed to assess the reliability of scenarios with equal or different probabilities of occurrence <doi:10.1002/we.1872>.
Estimation of models with dependent variable left-censored at zero. Null values may be caused by a selection process Cragg (1971) <doi:10.2307/1909582>, insufficient resources Tobin (1958) <doi:10.2307/1907382>, or infrequency of purchase Deaton and Irish (1984) <doi:10.1016/0047-2727(84)90067-7>.
Analyses the stability and structural behaviour of export and import patterns across multiple countries using a Markov chain modelling framework. Constructs transition probability matrices to quantify changes in trade shares between successive periods, thereby capturing persistence, structural shifts, and inter-country interdependence in trade performance. By iteratively generating expected trade distributions over time, the approach facilitates assessment of stability, long-run equilibrium tendencies, and comparative dynamics in longitudinal trade data, providing a rigorous tool for empirical analysis of exportâ import behaviour. Methodological foundations follow standard Markov chain theory as described in Gagniuc (2017) <Doi:10.1002/9781119387596>.
Simulate a (bivariate) multivariate renewal Hawkes (MRHawkes) self-exciting process, with given immigrant hazard rate functions and offspring density function. Calculate the likelihood of a MRHawkes process with given hazard rate functions and offspring density function for an (increasing) sequence of event times. Calculate the Rosenblatt residuals of the event times. Predict future event times based on observed event times up to a given time. For details see Stindl and Chen (2018) <doi:10.1016/j.csda.2018.01.021>.
Large-scale matrix-variate data have been widely observed nowadays in various research areas such as finance, signal processing and medical imaging. Modelling matrix-valued data by matrix-elliptical family not only provides a flexible way to handle heavy-tail property and tail dependencies, but also maintains the intrinsic row and column structure of random matrices. We proposed a new tool named matrix Kendall's tau which is efficient for analyzing random elliptical matrices. By applying this new type of Kendellâ s tau to the matrix elliptical factor model, we propose a Matrix-type Robust Two-Step (MRTS) method to estimate the loading and factor spaces. See the details in He at al. (2022) <arXiv:2207.09633>. In this package, we provide the algorithms for calculating sample matrix Kendall's tau, the MRTS method and the Matrix Kendall's tau Eigenvalue-Ratio (MKER) method which is used for determining the number of factors.
The rapid screening of effective and optimal therapies from large numbers of candidate combinations, as well as exploring subgroup efficacy, remains challenging, which necessitates innovative, integrated, and efficient trial designs(Yuan, Y., et al. (2016) <doi:10.1002/sim.6971>). MIDAS-2 package enables quick and continuous screening of promising combination strategies and exploration of their subgroup effects within a unified platform design framework. We used a regression model to characterize the efficacy pattern in subgroups. Information borrowing was applied through Bayesian hierarchical model to improve trial efficiency considering the limited sample size in subgroups(Cunanan, K. M., et al. (2019) <doi:10.1177/1740774518812779>). MIDAS-2 provides an adaptive drug screening and subgroup exploring framework to accelerate immunotherapy development in an efficient, accurate, and integrated fashion(Wathen, J. K., & Thall, P. F. (2017) <doi: 10.1177/1740774517692302>).
Basic functions for microbial sequence data analysis. The idea is to use generic R data structures as much as possible, making R data wrangling possible also for sequence data.
Fit Gaussian Multinomial mixed-effects models for small area estimation: Model 1, with one random effect in each category of the response variable (Lopez-Vizcaino,E. et al., 2013) <doi:10.1177/1471082X13478873>; Model 2, introducing independent time effect; Model 3, introducing correlated time effect. mme calculates direct and parametric bootstrap MSE estimators (Lopez-Vizcaino,E et al., 2014) <doi:10.1111/rssa.12085>.
This package provides functions for measuring population divergence from genotypic data.
Fit Bayesian stochastic block models (SBMs) and multi-level stochastic block models (MLSBMs) using efficient Gibbs sampling implemented in Rcpp'. The models assume symmetric, non-reflexive graphs (no self-loops) with unweighted, binary edges. Data are input as a symmetric binary adjacency matrix (SBMs), or list of such matrices (MLSBMs).
This package implements the moment-matching approximation for differences of non-standardized t-distributed random variables in both univariate and multivariate settings. The package provides density, distribution function, quantile function, and random generation for the approximated distributions of t-differences. The methodology establishes the univariate approximated distributions through the systematic matching of the first, second, and fourth moments, and extends it to multivariate cases, considering both scenarios of independent components and the more general multivariate t-distributions with arbitrary dependence structures. Methods build on the classical moment-matching approximation method (e.g., Casella and Berger (2024) <doi:10.1201/9781003456285>).
This package provides methods and classes for adding m-activation ("multiplicative activation") layers to MLR or multivariate logistic regression models. M-activation layers created in this library detect and add input interaction (polynomial) effects into a predictive model. M-activation can detect high-order interactions -- a traditionally non-trivial challenge. Details concerning application, methodology, and relevant survey literature can be found in this library's vignette, "About.".
Computational functions for player metrics in major league baseball including batting, pitching, fielding, base-running, and overall player statistics. This package is actively maintained with new metrics being added as they are developed.
Machine coded genetic algorithm (MCGA) is a fast tool for real-valued optimization problems. It uses the byte representation of variables rather than real-values. It performs the classical crossover operations (uniform) on these byte representations. Mutation operator is also similar to classical mutation operator, which is to say, it changes a randomly selected byte value of a chromosome by +1 or -1 with probability 1/2. In MCGAs there is no need for encoding-decoding process and the classical operators are directly applicable on real-values. It is fast and can handle a wide range of a search space with high precision. Using a 256-unary alphabet is the main disadvantage of this algorithm but a moderate size population is convenient for many problems. Package also includes multi_mcga function for multi objective optimization problems. This function sorts the chromosomes using their ranks calculated from the non-dominated sorting algorithm.
An implementation for the multi-task Gaussian processes with common mean framework. Two main algorithms, called Magma and MagmaClust', are available to perform predictions for supervised learning problems, in particular for time series or any functional/continuous data applications. The corresponding articles has been respectively proposed by Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2022) <doi:10.1007/s10994-022-06172-1>, and Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2023) <https://jmlr.org/papers/v24/20-1321.html>. Theses approaches leverage the learning of cluster-specific mean processes, which are common across similar tasks, to provide enhanced prediction performances (even far from data) at a linear computational cost (in the number of tasks). MagmaClust is a generalisation of Magma where the tasks are simultaneously clustered into groups, each being associated to a specific mean process. User-oriented functions in the package are decomposed into training, prediction and plotting functions. Some basic features (classic kernels, training, prediction) of standard Gaussian processes are also implemented.
Implementations of an estimator for the multivariate regression association measure (MRAM) proposed in Shih and Chen (2026) <doi:10.1016/j.csda.2025.108288> and its associated variable selection algorithm. The MRAM quantifies the predictability of a random vector Y from a random vector X given a random vector Z. It takes the maximum value 1 if and only if Y is almost surely a measurable function of X and Z, and the minimum value of 0 if Y is conditionally independent of X given Z. The MRAM generalizes the Kendall's tau copula correlation ratio proposed in Shih and Emura (2021) <doi:10.1016/j.jmva.2020.104708> by employing the spatial sign function. The estimator is based on the nearest neighbor method, and the associated variable selection algorithm is adapted from the feature ordering by conditional independence (FOCI) algorithm of Azadkia and Chatterjee (2021) <doi:10.1214/21-AOS2073>. For further details, see the paper Shih and Chen (2026) <doi:10.1016/j.csda.2025.108288>.
Identifying maturation stages across young athletes is paramount for talent identification. Furthermore, the concept of biobanding, or grouping of athletes based on their biological development, instead of their chronological age, has been widely researched. The goal of this package is to help professionals working in the field of strength & conditioning and talent ID obtain common maturation metrics and as well as to quickly visualize this information via several plotting options. For the methods behind the computed maturation metrics implemented in this package refer to Khamis, H. J., & Roche, A. F. (1994) <https://pubmed.ncbi.nlm.nih.gov/7936860/>, Mirwald, R.L et al., (2002) <https://pubmed.ncbi.nlm.nih.gov/11932580/> and Cumming, Sean P. et al., (2017) <doi:10.1519/SSC.0000000000000281>.
Information of the centroids and geographical limits of the regions, departments, provinces and districts of Peru.
This package performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.