Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to calculate hazard and survival function of Multi-Stage Clonal Expansion Models used in cancer epidemiology. For the Two-Stage Clonal Expansion Model an exact solution is implemented assuming piecewise constant parameters, see Heidenreich, Luebeck, Moolgavkar (1997) <doi:10.1111/j.1539-6924.1997.tb00878.x>. Numerical solutions are provided for its extensions, see also Little, Vineis, Li (2008) <doi:10.1016/j.jtbi.2008.05.027>.
Correlation coefficients for multivariate data, namely the squared correlation coefficient and the RV coefficient (multivariate generalization of the squared Pearson correlation coefficient). References include Mardia K.V., Kent J.T. and Bibby J.M. (1979). "Multivariate Analysis". ISBN: 978-0124712522. London: Academic Press.
Helper functions that interface with the system utilities to learn about the local build environment. Lets you explore make rules to test the local configuration, or query pkg-config to find compiler flags and libs needed for building packages with external dependencies. Also contains tools to analyze which libraries that a installed R package linked to by inspecting output from ldd in combination with information from your distribution package manager, e.g. rpm or dpkg'.
Impute the covariance matrix of incomplete data so that factor analysis can be performed. Imputations are made using multiple imputation by Multivariate Imputation with Chained Equations (MICE) and combined with Rubin's rules. Parametric Fieller confidence intervals and nonparametric bootstrap confidence intervals can be obtained for the variance explained by different numbers of principal components. The method is described in Nassiri et al. (2018) <doi:10.3758/s13428-017-1013-4>.
Fits multi-way component models via alternating least squares algorithms with optional constraints. Fit models include N-way Canonical Polyadic Decomposition, Individual Differences Scaling, Multiway Covariates Regression, Parallel Factor Analysis (1 and 2), Simultaneous Component Analysis, and Tucker Factor Analysis.
This package provides functions to calculate the minimum and maximum possible values of Cronbach's alpha when item-level missing data are present. Cronbach's alpha (Cronbach, 1951 <doi:10.1007/BF02310555>) is one of the most widely used measures of internal consistency in the social, behavioral, and medical sciences (Bland & Altman, 1997 <doi:10.1136/bmj.314.7080.572>; Tavakol & Dennick, 2011 <doi:10.5116/ijme.4dfb.8dfd>). However, conventional implementations assume complete data, and listwise deletion is often applied when missingness occurs, which can lead to biased or overly optimistic reliability estimates (Enders, 2003 <doi:10.1037/1082-989X.8.3.322>). This package implements computational strategies including enumeration, Monte Carlo sampling, and optimization algorithms (e.g., Genetic Algorithm, Differential Evolution, Sequential Least Squares Programming) to obtain sharp lower and upper bounds of Cronbach's alpha under arbitrary missing data patterns. The approach is motivated by Manski's partial identification framework and pessimistic bounding ideas from optimization literature.
Calculation routines based on the FOCUS Kinetics Report (2006, 2014). Includes a function for conveniently defining differential equation models, model solution based on eigenvalues if possible or using numerical solvers. If a C compiler (on windows: Rtools') is installed, differential equation models are solved using automatically generated C functions. Non-constant errors can be taken into account using variance by variable or two-component error models <doi:10.3390/environments6120124>. Hierarchical degradation models can be fitted using nonlinear mixed-effects model packages as a back end <doi:10.3390/environments8080071>. Please note that no warranty is implied for correctness of results or fitness for a particular purpose.
Pipeline for Genome-Wide Association Study using Multi-Locus Mixed Model from Segura V, Vilhjálmsson BJ et al. (2012) <doi:10.1038/ng.2314>. The pipeline include detection of associated SNPs with MLMM, model selection by lowest eBIC and p-value threshold, estimation of the effects of the SNPs in the selected model and graphical functions.
Extends the base classes and methods of caret package for integration of base learners. The user can input the number of different base learners, and specify the final learner, along with the train-validation-test data partition split ratio. The predictions on the unseen new data is the resultant of the ensemble meta-learning <https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/> of the heterogeneous learners aimed to reduce the generalization error in the predictive models. It significantly lowers the barrier for the practitioners to apply heterogeneous ensemble learning techniques in an amateur fashion to their everyday predictive problems.
This package contains basic tools for performing multiple-output quantile regression and computing regression quantile contours by means of directional regression quantiles. In the location case, one can thus obtain halfspace depth contours in two to six dimensions. Hallin, M., Paindaveine, D. and Å iman, M. (2010) Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth. Annals of Statistics 38, 635-669 For more references about the method, see Help pages.
Nonparametric estimation and inference for natural direct and indirect effects by Chan, Imai, Yam and Zhang (2016) <arXiv:1601.03501>.
Apply tests of multiple comparisons based on studentized midrange and range distributions. The tests are: Tukey Midrange ('TM test), Student-Newman-Keuls Midrange ('SNKM test), Means Grouping Midrange ('MGM test) and Means Grouping Range ('MGR test). The first two tests were published by Batista and Ferreira (2020) <doi:10.1590/1413-7054202044008020>. The last two were published by Batista and Ferreira (2023) <doi:10.28951/bjb.v41i4.640>.
The Markov Decision Processes (MDP) toolbox proposes functions related to the resolution of discrete-time Markov Decision Processes: finite horizon, value iteration, policy iteration, linear programming algorithms with some variants and also proposes some functions related to Reinforcement Learning.
Recently, multiple marginal variable selection methods have been developed and shown to be effective in Gene-Environment interactions studies. We propose a novel marginal Bayesian variable selection method for Gene-Environment interactions studies. In particular, our marginal Bayesian method is robust to data contamination and outliers in the outcome variables. With the incorporation of spike-and-slab priors, we have implemented the Gibbs sampler based on Markov Chain Monte Carlo. The core algorithms of the package have been developed in C++'.
Implementation of adaptive assessment procedures based on Knowledge Space Theory (KST, Doignon & Falmagne, 1999 <ISBN:9783540645016>) and Formal Psychological Assessment (FPA, Spoto, Stefanutti & Vidotto, 2010 <doi:10.3758/BRM.42.1.342>) frameworks. An adaptive assessment is a type of evaluation that adjusts the difficulty and nature of subsequent questions based on the test taker's responses to previous ones. The package contains functions to perform and simulate an adaptive assessment. Moreover, it is integrated with two Shiny interfaces, making it both accessible and user-friendly. The package has been partially funded by the European Union - NextGenerationEU and by the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.5, project â RAISE - Robotics and AI for Socio-economic Empowermentâ (ECS00000035).
Incorporates Approximate Bayesian Computation to get a posterior distribution and to select a model optimal parameter for an observation point. Additionally, the meta-sampling heuristic algorithm is realized for parameter estimation, which requires no model runs and is dimension-independent. A sampling scheme is also presented that allows model runs and uses the meta-sampling for point generation. A predictor is realized as the meta-sampling for the model output. All the algorithms leverage a machine learning method utilizing the maxima weighted Isolation Kernel approach, or MaxWiK'. The method involves transforming raw data to a Hilbert space (mapping) and measuring the similarity between simulated points and the maxima weighted Isolation Kernel mapping corresponding to the observation point. Comprehensive details of the methodology can be found in the papers Iurii Nagornov (2024) <doi:10.1007/978-3-031-66431-1_16> and Iurii Nagornov (2023) <doi:10.1007/978-3-031-29168-5_18>.
This package provides functions to fit finite mixture of scale mixture of skew-normal (FM-SMSN) distributions, details in Prates, Lachos and Cabral (2013) <doi: 10.18637/jss.v054.i12>, Cabral, Lachos and Prates (2012) <doi:10.1016/j.csda.2011.06.026> and Basso, Lachos, Cabral and Ghosh (2010) <doi:10.1016/j.csda.2009.09.031>.
Basic Setup for Projects in R for Monterey County Office of Education. It contains functions often used in the analysis of education data in the county office including seeing if an item is not in a list, rounding in the manner the general public expects, including logos for districts, switching between district names and their county-district-school codes, accessing the local SQL table and making thematically consistent graphs.
Mask ranges based on expert knowledge or remote sensing layers. These tools can be combined to quantitatively and reproducibly generate a new map or to update an existing map. Methods include expert opinion and data-driven tools to generate thresholds for binary masks.
This grants the functionality of the Maxar Geospatial Platform (MGP) Streaming API. It can search for images using the WFS method. It can Download images using WMS WMTS. It can also Download a full resolution image.
An implementation of matrix mathematics wherein operations are performed "by name.".
This package implements two methods: a nonparametric risk adjustment and a data imputation method that use general population mortality tables to allow a correct analysis of time to disease recurrence. Also includes a powerful set of object oriented survival data simulation functions.
This package provides a toolbox to handle and represent trophic networks in space or time across aggregation levels. This package contains a layout algorithm specifically designed for trophic networks, using dimension reduction on a diffusion graph kernel and trophic levels. Importantly, this package provides a layout method applicable for large trophic networks.
Estimation of the survivor function for interval censored time-to-event data subject to misclassification using nonparametric maximum likelihood estimation, implementing the methods of Titman (2017) <doi:10.1007/s11222-016-9705-7>. Misclassification probabilities can either be specified as fixed or estimated. Models with time dependent misclassification may also be fitted.