Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fast simulation from ordinary differential equation (ODE) based models typically employed in quantitative pharmacology and systems biology.
Computation of various confidence intervals (Altman et al. (2000), ISBN:978-0-727-91375-3; Hedderich and Sachs (2018), ISBN:978-3-662-56657-2) including bootstrapped versions (Davison and Hinkley (1997), ISBN:978-0-511-80284-3) as well as Hsu (Hedderich and Sachs (2018), ISBN:978-3-662-56657-2), permutation (Janssen (1997), <doi:10.1016/S0167-7152(97)00043-6>), bootstrap (Davison and Hinkley (1997), ISBN:978-0-511-80284-3), intersection-union (Sozu et al. (2015), ISBN:978-3-319-22005-5) and multiple imputation (Barnard and Rubin (1999), <doi:10.1093/biomet/86.4.948>) t-test; furthermore, computation of intersection-union z-test as well as multiple imputation Wilcoxon tests. Graphical visualizations: volcano plot, Bland-Altman plots (Bland and Altman (1986), <doi:10.1016/S0140-6736(86)90837-8>; Shieh (2018), <doi:10.1186/s12874-018-0505-y>), mean difference plot (Boehning et al. (2008), <doi:10.1177/0962280207081867>), plot of test statistic for permutation and bootstrap tests as well as objects of class htest.
Modelling Multivariate Binary Data with Blocks of Specific One-Factor Distribution. Variables are grouped into independent blocks. Each variable is described by two continuous parameters (its marginal probability and its dependency strength with the other block variables), and one binary parameter (positive or negative dependency). Model selection consists in the estimation of the repartition of the variables into blocks. It is carried out by the maximization of the BIC criterion by a deterministic (faster) algorithm or by a stochastic (more time consuming but optimal) algorithm. Tool functions facilitate the model interpretation.
Determines single or multiple modes (most frequent values). Checks if missing values make this impossible, and returns NA in this case. Dependency-free source code. See Franzese and Iuliano (2019) <doi:10.1016/B978-0-12-809633-8.20354-3>.
Check concordance of a vector of mutation impacts with standard dictionaries such as Sequence Ontology (SO) <http://www.sequenceontology.org/>, Mutation Annotation Format (MAF) <https://docs.gdc.cancer.gov/Encyclopedia/pages/Mutation_Annotation_Format_TCGAv2/> or Prediction and Annotation of Variant Effects (PAVE) <https://github.com/hartwigmedical/hmftools/tree/master/pave>. It enables conversion between SO/PAVE and MAF terms and selection of the most severe consequence where multiple ampersand (&) delimited impacts are given.
Normally building a GODB is fairly complicated, involving downloading multiple database files and using these to build e.g. a mySQL database. Accessing this database is also complicated, involving an intimate knowledge of the database in order to construct reliable queries. Here we have a more modest goal, generating GOGOA3, which is a stripped down version of the GODB that was originally restricted to human genes as designated by the HUGO Gene Nomenclature Committee (HGNC) (see <https://geneontology.org/>). I have now added about two dozen additional species, namely all species represented on the Gene Ontology download page <https://current.geneontology.org/products/pages/downloads.html>. This covers most of the model organisms that are commonly used in bio-medical and basic research (assuming that anyone still has a grant to do such research). This can be built in a matter of seconds from 2 easily downloaded files (see <https://current.geneontology.org/products/pages/downloads.html> and <https://geneontology.org/docs/download-ontology/>), and it can be queried by e.g. w<-which(GOGOA3[,"HGNC"] %in% hgncList) where GOGOA3 is a matrix representing the minimalist GODB and hgncList is a list of gene identifiers. This database will be used in my upcoming package GoMiner which is based on my previous publication (see Zeeberg, B.R., Feng, W., Wang, G. et al. (2003)<doi:10.1186/gb-2003-4-4-r28>). Relevant .RData files are available from GitHub (<https://github.com/barryzee/GO/tree/main/databases>).
This package provides functions and S4 methods to create and manage discrete time Markov chains more easily. In addition functions to perform statistical (fitting and drawing random variates) and probabilistic (analysis of their structural proprieties) analysis are provided. See Spedicato (2017) <doi:10.32614/RJ-2017-036>. Some functions for continuous times Markov chains depend on the suggested ctmcd package.
Evaluate bias and precision in method comparison studies. One provides measurements for each method and it takes care of the estimates. Multiple plots to evaluate bias, precision and compare methods.
Spontaneous adverse event reports have a high potential for detecting adverse drug reactions. However, due to their dimension, the analysis of such databases requires statistical methods. We propose to use a logistic regression whose sparsity is viewed as a model selection challenge. Since the model space is huge, a Metropolis-Hastings algorithm carries out the model selection by maximizing the BIC criterion.
Values below the limit of detection (LOD) are a problem in several fields of science, and there are numerous approaches for replacing the missing data. We present a new mathematical solution for maximum likelihood estimation that allows us to estimate the true values of the mean and standard deviation for normal distributions and is significantly faster than previous implementations. The article with the details was submitted to JSS and can be currently seen on <https://www2.arnes.si/~tverbo/LOD/Verbovsek_Sega_2_Manuscript.pdf>.
This package provides functions to access data from public RESTful APIs including REST Countries API', World Bank API', and Nager.Date API', covering Mexico's economic indicators, population statistics, literacy rates, international geopolitical information and official public holidays. The package also includes curated datasets related to Mexico such as air quality monitoring stations, pollution zones, income surveys, postal abbreviations, election studies, forest productivity and demographic data by state. It supports research and analysis focused on Mexico by integrating reliable global APIs with structured national datasets drawn from open and academic sources. For more information on the APIs, see: REST Countries API <https://restcountries.com/>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and Nager.Date API <https://date.nager.at/Api>.
An implementation for the multi-task Gaussian processes with common mean framework. Two main algorithms, called Magma and MagmaClust', are available to perform predictions for supervised learning problems, in particular for time series or any functional/continuous data applications. The corresponding articles has been respectively proposed by Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2022) <doi:10.1007/s10994-022-06172-1>, and Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2023) <https://jmlr.org/papers/v24/20-1321.html>. Theses approaches leverage the learning of cluster-specific mean processes, which are common across similar tasks, to provide enhanced prediction performances (even far from data) at a linear computational cost (in the number of tasks). MagmaClust is a generalisation of Magma where the tasks are simultaneously clustered into groups, each being associated to a specific mean process. User-oriented functions in the package are decomposed into training, prediction and plotting functions. Some basic features (classic kernels, training, prediction) of standard Gaussian processes are also implemented.
The estimation of the parameters in mixed Poisson models.
Parses information from text files with specific utility aimed at pulling information from Med Associate's (MPC) files. These functions allow for further analysis of MPC files.
Integrating morphological modeling with machine learning to support structured decision-making (e.g., in management and consulting). The package enumerates a morphospace of feasible configurations and uses random forests to estimate class probabilities over that space, bridging deductive model exploration with empirical validation. It includes utilities for factorizing inputs, model training, morphospace construction, and an interactive shiny app for scenario exploration.
It can be used to create/encode molecular "license-plates" from sequences and to also decode the "license-plates" back to sequences. While initially created for transfer RNA-derived small fragments (tRFs), this tool can be used for any genomic sequences including but not limited to: tRFs, microRNAs, etc. The detailed information can reference to Pliatsika V, Loher P, Telonis AG, Rigoutsos I (2016) <doi:10.1093/bioinformatics/btw194>. It can also be used to annotate tRFs. The detailed information can reference to Loher P, Telonis AG, Rigoutsos I (2017) <doi:10.1038/srep41184>.
Multiple Imputation has been shown to be a flexible method to impute missing values by Van Buuren (2007) <doi:10.1177/0962280206074463>. Expanding on this, random forests have been shown to be an accurate model by Stekhoven and Buhlmann <arXiv:1105.0828> to impute missing values in datasets. They have the added benefits of returning out of bag error and variable importance estimates, as well as being simple to run in parallel.
This package provides a system for Analysis of RBD when there is one missing observation. Methods for this process is described in A.M.Gun,M.K.Gupta,B.Dasgupta(2019,ISBN:81-87567-81-3).
The minimax family of distributions is a two-parameter family like the beta family, but computationally a lot more tractible.
This package implements Multi-Calibration Boosting (2018) <https://proceedings.mlr.press/v80/hebert-johnson18a.html> and Multi-Accuracy Boosting (2019) <doi:10.48550/arXiv.1805.12317> for the multi-calibration of a machine learning model's prediction. MCBoost updates predictions for sub-groups in an iterative fashion in order to mitigate biases like poor calibration or large accuracy differences across subgroups. Multi-Calibration works best in scenarios where the underlying data & labels are unbiased, but resulting models are. This is often the case, e.g. when an algorithm fits a majority population while ignoring or under-fitting minority populations.
This package implements an interface to the legacy Fortran code from O'Connell and Dobson (1984) <DOI:10.2307/2531148>. Implements Fortran 77 code for the methods developed by Schouten (1982) <DOI:10.1111/j.1467-9574.1982.tb00774.x>. Includes estimates of average agreement for each observer and average agreement for each subject.
Bayesian inference analysis for bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximation with INLA. A purpose built graphic user interface is available. The installation of R package INLA is compulsory for successful usage. The INLA package can be obtained from <https://www.r-inla.org>. We recommend the testing version, which can be downloaded by running: install.packages("INLA", repos=c(getOption("repos"), INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE).
This package offers three important components: (1) to construct a use-defined linear mixed model, (2) to employ one of linear mixed model approaches: minimum norm quadratic unbiased estimation (MINQUE) (Rao, 1971) for variance component estimation and random effect prediction; and (3) to employ a jackknife resampling technique to conduct various statistical tests. In addition, this package provides the function for model or data evaluations.This R package offers fast computations for large data sets analyses for various irregular data structures.
This package provides methods for quality control and robust pre-processing and analysis of MALDI mass spectrometry data (Palarea-Albaladejo et al. (2018) <doi:10.1093/bioinformatics/btx628>).