Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes Control limits, coefficients of control limits, various performance metrics and depicts control charts for monitoring Maxwell-distributed quality characteristics.
This package implements the methods described in Bond S, Farewell V, 2006, Exact Likelihood Estimation for a Negative Binomial Regression Model with Missing Outcomes, Biometrics.
Calculates MeDiA_K (means Mean Distance Association by K-nearest neighbor) in order to detect nonlinear associations.
Constructs mixed-level and regular fractional factorial designs using coordinate-exchange optimization and automatic generator search. Design quality is evaluated with J2 and balance (H-hat) criteria, alias structures are computed via correlation-based chaining, and deterministic trend-free run orders can be produced following Coster (1993) <doi:10.1214/aos/1176349410>. Mixed-level design construction follows the NONBPA approach of Pantoja-Pacheco et al. (2021) <doi:10.3390/math9131455>. Regular fraction identification follows Guo, Simpson and Pignatiello (2007) <doi:10.1080/00224065.2007.11917691>. Alias structure computation follows Rios-Lira et al.(2021) <doi:10.3390/math9233053>.
An implementation of a method for building simultaneous confidence intervals for the probabilities of a multinomial distribution given a set of observations, proposed by Sison and Glaz in their paper: Sison, C.P and J. Glaz. Simultaneous confidence intervals and sample size determination for multinomial proportions. Journal of the American Statistical Association, 90:366-369 (1995). The method is an R translation of the SAS code implemented by May and Johnson in their paper: May, W.L. and W.D. Johnson. Constructing two-sided simultaneous confidence intervals for multinomial proportions for small counts in a large number of cells. Journal of Statistical Software 5(6) (2000). Paper and code available at <DOI:10.18637/jss.v005.i06>.
Analyse and visualise multi electrode array data at the single electrode and whole well level, downstream of AxIS Navigator 3.6.2 Software processing. Compare bursting parameters between time intervals and recordings using the bar chart visualisation functions. Compatible with 12- and 24- well plates.
Emulate MATLAB code using R'.
Compute the average of a sequence of random vectors in a moving expanding window using a fixed amount of memory.
This package provides a number of functions to facilitate the handling and production of reports using time series data. The package was developed to be understandable for beginners, so some functions aim to transform processes that would be complex into functions with a few lines. The main advantage of using the metools package is the ease of producing reports and working with time series using a few lines of code, so the code is clean and easy to understand/maintain. Learn more about the metools at <https://metoolsr.wordpress.com>.
An API wrapper for the Monash University Probabilistic Footy Tipping Competition <https://probabilistic-footy.monash.edu/~footy/index.shtml>. Allows users to submit tips directly to the competition from R.
The mycobacrvR package contains utilities to provide detailed information for B cell and T cell epitopes for predicted adhesins from various servers such as ABCpred, Bcepred, Bimas, Propred, NetMHC and IEDB. Please refer the URL below to download data files (data_mycobacrvR.zip) used in functions of this package.
Causal moderated mediation analysis using the methods proposed by Qin and Wang (2023) <doi:10.3758/s13428-023-02095-4>. Causal moderated mediation analysis is crucial for investigating how, for whom, and where a treatment is effective by assessing the heterogeneity of mediation mechanism across individuals and contexts. This package enables researchers to estimate and test the conditional and moderated mediation effects, assess their sensitivity to unmeasured pre-treatment confounding, and visualize the results. The package is built based on the quasi-Bayesian Monte Carlo method, because it has relatively better performance at small sample sizes, and its running speed is the fastest. The package is applicable to a treatment of any scale, a binary or continuous mediator, a binary or continuous outcome, and one or more moderators of any scale.
Random Forest Spatial Interpolation (RFSI, SekuliÄ et al. (2020) <doi:10.3390/rs12101687>) and spatio-temporal geostatistical (spatio-temporal regression Kriging (STRK)) interpolation for meteorological (Kilibarda et al. (2014) <doi:10.1002/2013JD020803>, SekuliÄ et al. (2020) <doi:10.1007/s00704-019-03077-3>) and other environmental variables. Contains global spatio-temporal models calculated using publicly available data.
This package provides a framework for deconvolution, alignment and postprocessing of 1-dimensional (1d) nuclear magnetic resonance (NMR) spectra, resulting in a data matrix of aligned signal integrals. The deconvolution part uses the algorithm described in Koh et al. (2009) <doi:10.1016/j.jmr.2009.09.003>. The alignment part is based on functions from the speaq package, described in Beirnaert et al. (2018) <doi:10.1371/journal.pcbi.1006018> and Vu et al. (2011) <doi:10.1186/1471-2105-12-405>. A detailed description and evaluation of an early version of the package, MetaboDecon1D v0.2.2', can be found in Haeckl et al. (2021) <doi:10.3390/metabo11070452>.
This is a non-parametric method for joint adaptive mean-variance regularization and variance stabilization of high-dimensional data. It is suited for handling difficult problems posed by high-dimensional multivariate datasets (p >> n paradigm). Among those are that the variance is often a function of the mean, variable-specific estimators of variances are not reliable, and tests statistics have low powers due to a lack of degrees of freedom. Key features include: (i) Normalization and/or variance stabilization of the data, (ii) Computation of mean-variance-regularized t-statistics (F-statistics to follow), (iii) Generation of diverse diagnostic plots, (iv) Computationally efficient implementation using C/C++ interfacing and an option for parallel computing to enjoy a faster and easier experience in the R environment.
This package provides a series of functions to implement association of covariance for detecting differential co-expression (ACDC), a novel approach for detection of differential co-expression that simultaneously accommodates multiple phenotypes or exposures with binary, ordinal, or continuous data types. Users can use the default method which identifies modules by Partition or may supply their own modules. Also included are functions to choose an information loss criterion (ILC) for Partition using OmicS-data-based Complex trait Analysis (OSCA) and Genome-wide Complex trait Analysis (GCTA). The manuscript describing these methods is as follows: Queen K, Nguyen MN, Gilliland F, Chun S, Raby BA, Millstein J. "ACDC: a general approach for detecting phenotype or exposure associated co-expression" (2023) <doi:10.3389/fmed.2023.1118824>.
Provide a suite of functions for conducting and automating Latent Growth Modeling (LGM) in Mplus', including Growth Curve Model (GCM), Growth-Based Trajectory Model (GBTM) and Latent Class Growth Analysis (LCGA). The package builds upon the capabilities of the MplusAutomation package (Hallquist & Wiley, 2018) to streamline large-scale latent variable analyses. âMplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus.â Structural Equation Modeling, 25(4), 621â 638. <doi:10.1080/10705511.2017.1402334> The workflow implemented in this package follows the recommendations outlined in Van Der Nest et al. (2020). â An Overview of Mixture Modeling for Latent Evolutions in Longitudinal Data: Modeling Approaches, Fit Statistics, and Software.â Advances in Life Course Research, 43, Article 100323. <doi:10.1016/j.alcr.2019.100323>.
Analysis of musical scales (& modes, grooves, etc.) in the vein of Sherrill 2025 <doi:10.1215/00222909-11595194>. The initials MCT in the package title refer to the article's title: "Modal Color Theory." Offers support for conventional musical pitch class set theory as developed by Forte (1973, ISBN: 9780300016109) and David Lewin (1987, ISBN: 9780300034936), as well as for the continuous geometries of Callender, Quinn, & Tymoczko (2008) <doi:10.1126/science.1153021>. Identifies structural properties of scales and calculates derived values (sign vector, color number, brightness ratio, etc.). Creates plots such as "brightness graphs" which visualize these properties.
This package provides functions for obtaining estimates of the parameter of the niche preemption model (also known as the geometric series), in particular a maximum likelihood estimator (Graffelman, 2021) <doi:10.1101/2021.01.27.428381>. The niche preemption model is a widely used model in ecology and biodiversity studies.
Statistical methods to match feature vectors between multiple datasets in a one-to-one fashion. Given a fixed number of classes/distributions, for each unit, exactly one vector of each class is observed without label. The goal is to label the feature vectors using each label exactly once so to produce the best match across datasets, e.g. by minimizing the variability within classes. Statistical solutions based on empirical loss functions and probabilistic modeling are provided. The Gurobi software and its R interface package are required for one of the package functions (match.2x()) and can be obtained at <https://www.gurobi.com/> (free academic license). For more details, refer to Degras (2022) <doi:10.1080/10618600.2022.2074429> "Scalable feature matching for large data collections" and Bandelt, Maas, and Spieksma (2004) <doi:10.1057/palgrave.jors.2601723> "Local search heuristics for multi-index assignment problems with decomposable costs".
This package provides tools to help visualize Major League Baseball analysis in ggplot2 and gt'. You provide team/player information and mlbplotR will transform that information into team colors, logos, or player headshots for graphics.
This package provides a procedure for comparing multivariate samples associated with different groups. It uses principal component analysis to convert multivariate observations into a set of linearly uncorrelated statistical measures, which are then compared using a number of statistical methods. The procedure is independent of the distributional properties of samples and automatically selects features that best explain their differences, avoiding manual selection of specific points or summary statistics. It is appropriate for comparing samples of time series, images, spectrometric measures or similar multivariate observations. This package is described in Fachada et al. (2016) <doi:10.32614/RJ-2016-055>.
This package provides a new method to implement clustering from multiple modality data of certain samples, the function M2SMF() jointly factorizes multiple similarity matrices into a shared sub-matrix and several modality private sub-matrices, which is further used for clustering. Along with this method, we also provide function to calculate the similarity matrix and function to evaluate the best cluster number from the original data.
Includes support for Mapbox Navigation APIs, including directions, isochrones, and route optimization; the Search API for forward and reverse geocoding; the Maps API for interacting with Mapbox vector tilesets and visualizing Mapbox maps in R; and Mapbox Tiling Service and tippecanoe for generating map tiles. See <https://docs.mapbox.com/api/> for more information about the Mapbox APIs.