Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This project aims to make an accessible model for mosquito control resource optimization. The model uses data provided by users to estimate the mosquito populations in the sampling area for the sampling time period, and the optimal time to apply a treatment or multiple treatments.
In breeding experiments, mating environmental (ME) designs are very popular as mating designs are directly implemented in the field environment using block or row-column designs. Here, three functions are given related to three new methods which will generate mating diallel cross designs (Hinkelmann and Kempthorne, 1963<doi:10.2307/2333899>) or mating environmental (ME) designs along with design parameters, C matrix, eigenvalues (EVs), degree of fractionations (DF) and canonical efficiency factor (CEF). Another one function is added to check the properties of a given ME diallel cross design.
Algorithms to build set partitions and commutator matrices and their use in the construction of multivariate d-Hermite polynomials; estimation and derivation of theoretical vector moments and vector cumulants of multivariate distributions; conversion formulae for multivariate moments and cumulants. Applications to estimation and derivation of multivariate measures of skewness and kurtosis; estimation and derivation of asymptotic covariances for d-variate Hermite polynomials, multivariate moments and cumulants and measures of skewness and kurtosis. The formulae implemented are discussed in Terdik (2021, ISBN:9783030813925), "Multivariate Statistical Methods".
This package provides helper functions, metadata utilities, and workflows for administering and managing databases on the Motherduck cloud platform. Some features require a Motherduck account (<https://motherduck.com/>).
This package provides a likelihood-based approach to modeling species distributions using presence-only data. In contrast to the popular software program MAXENT, this approach yields estimates of the probability of occurrence, which is a natural descriptor of a species distribution.
This package provides a modeltime extension that implements forecast resampling tools that assess time-based model performance and stability for a single time series, panel data, and cross-sectional time series analysis.
This package provides a web-based graphical user interface to provide the basic steps of a machine learning workflow. It uses the functionalities of the mlr3 framework.
This package provides functions to analyze coherence, boundary clumping, and turnover following the pattern-based metacommunity analysis of Leibold and Mikkelson 2002 <doi:10.1034/j.1600-0706.2002.970210.x>. The package also includes functions to visualize ecological networks, and to calculate modularity as a replacement to boundary clumping.
Cooperative learning combines the usual squared error loss of predictions with an agreement penalty to encourage the predictions from different data views to agree. By varying the weight of the agreement penalty, we get a continuum of solutions that include the well-known early and late fusion approaches. Cooperative learning chooses the degree of agreement (or fusion) in an adaptive manner, using a validation set or cross-validation to estimate test set prediction error. In the setting of cooperative regularized linear regression, the method combines the lasso penalty with the agreement penalty (Ding, D., Li, S., Narasimhan, B., Tibshirani, R. (2021) <doi:10.1073/pnas.2202113119>).
This package provides an extension to MadanText for creating and analyzing co-occurrence networks in Persian text data. This package mainly makes use of the PersianStemmer (Safshekan, R., et al. (2019). <https://CRAN.R-project.org/package=PersianStemmer>), udpipe (Wijffels, J., et al. (2023). <https://CRAN.R-project.org/package=udpipe>), and shiny (Chang, W., et al. (2023). <https://CRAN.R-project.org/package=shiny>) packages.
This function allows to generate two biological conditions synthetic microarray dataset which has similar behavior to those currently observed with common platforms. User provides a subset of parameters. Available default parameters settings can be modified.
This package provides new functions info(), warn() and error(), similar to message(), warning() and stop() respectively. However, the new functions can have a level associated with them, so that when executed the global level option determines whether they are shown or not. This allows debug modes, outputting more information. The can also output all messages to a log file.
An implementation of modified maximum contrast methods (Sato et al. (2009) <doi:10.1038/tpj.2008.17>; Nagashima et al. (2011) <doi:10.2202/1544-6115.1560>) and the maximum contrast method (Yoshimura et al. (1997) <doi:10.1177/009286159703100213>): Functions mmcm.mvt() and mcm.mvt() give P-value by using randomized quasi-Monte Carlo method with pmvt() function of package mvtnorm', and mmcm.resamp() gives P-value by using a permutation method.
This package implements a high dimensional mediation analysis algorithm using Local False Discovery Rates. The methodology is described in Roy and Zhang (2024) <doi:10.48550/arXiv.2402.13933>.
Administrative Boundaries of Spain at several levels (Autonomous Communities, Provinces, Municipalities) based on the GISCO Eurostat database <https://ec.europa.eu/eurostat/web/gisco> and CartoBase SIANE from Instituto Geografico Nacional <https://www.ign.es/>. It also provides a leaflet plugin and the ability of downloading and processing static tiles.
This package provides a function for measuring the difference between two independent or non-independent empirical distributions and returning a significance level of the difference.
Package with multivariate analysis methodologies for experiment evaluation. The package estimates dissimilarity measures, builds dendrograms, obtains MANOVA, principal components, canonical variables, etc. (Pacote com metodologias de analise multivariada para avaliação de experimentos. O pacote estima medidas de dissimilaridade, construi de dendogramas, obtem a MANOVA, componentes principais, variaveis canonicas, etc.).
Transfer learning, as a prevailing technique in computer sciences, aims to improve the performance of a target model by leveraging auxiliary information from heterogeneous source data. We provide novel tools for multi-source transfer learning under statistical models based on model averaging strategies, including linear regression models, partially linear models. Unlike existing transfer learning approaches, this method integrates the auxiliary information through data-driven weight assignments to avoid negative transfer. This is the first package for transfer learning based on the optimal model averaging frameworks, providing efficient implementations for practitioners in multi-source data modeling. The details are described in Hu and Zhang (2023) <https://jmlr.org/papers/v24/23-0030.html>.
Estimates probit, logit, Poisson, negative binomial, and beta regression models, returning their marginal effects, odds ratios, or incidence rate ratios as an output. Greene (2008, pp. 780-7) provides a textbook introduction to this topic.
The effects of the site may severely bias the accuracy of a multisite machine-learning model, even if the analysts removed them when fitting the model in the training set and applying the model in the test set (Solanes et al., Neuroimage 2023, 265:119800). This simple R package estimates the accuracy of a multisite machine-learning model unbiasedly, as described in (Solanes et al., Psychiatry Research: Neuroimaging 2021, 314:111313). It currently supports the estimation of sensitivity, specificity, balanced accuracy (for binary or multinomial variables), the area under the curve, correlation, mean squarer error, and hazard ratio for binomial, multinomial, gaussian, and survival (time-to-event) outcomes.
Download data from the Ada and Archibald MacLeish Field Station in Whately, MA. The Ada and Archibald MacLeish Field Station is a 260-acre patchwork of forest and farmland located in West Whately, MA that provides opportunities for faculty and students to pursue environmental research, outdoor education, and low-impact recreation (see <https://www.smith.edu/discover-smith/smith-action/sustainable-smith/macleish-field-station> for more information). This package contains weather data over several years, and spatial data on various man-made and natural structures.
Given an image of a formula (typeset or handwritten) this package provides calls to the Mathpix service to produce the LaTeX code which should generate that image, and pastes it into a (e.g. an rmarkdown') document. See <https://docs.mathpix.com/> for full details. Mathpix is an external service and use of the API is subject to their terms and conditions.
Fit finite mixture distribution models to grouped data and conditional data by maximum likelihood using a combination of a Newton-type algorithm and the EM algorithm.
This package provides tools for the integration, visualisation, and modelling of spatial epidemiological data using the method described in Azeez, A., & Noel, C. (2025). Predictive Modelling and Spatial Distribution of Pancreatic Cancer in Africa Using Machine Learning-Based Spatial Model <doi:10.5281/zenodo.16529986> and <doi:10.5281/zenodo.16529016>. It facilitates the analysis of geographic health data by combining modern spatial mapping tools with advanced machine learning (ML) algorithms. mlspatial enables users to import and pre-process shapefile and associated demographic or disease incidence data, generate richly annotated thematic maps, and apply predictive models, including Random Forest, XGBoost', and Support Vector Regression, to identify spatial patterns and risk factors. It is suited for spatial epidemiologists, public health researchers, and GIS analysts aiming to uncover hidden geographic patterns in health-related outcomes and inform evidence-based interventions.