Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides access to coded election programmes from the Manifesto Corpus and to the Manifesto Project's Main Dataset and routines to analyse this data. The Manifesto Project <https://manifesto-project.wzb.eu> collects and analyses election programmes across time and space to measure the political preferences of parties. The Manifesto Corpus contains the collected and annotated election programmes in the Corpus format of the package tm to enable easy use of text processing and text mining functionality. Specific functions for scaling of coded political texts are included.
Given a vector of multivariate normal data, a matrix of covariates and the data covariance matrix, generate new multivariate normal samples that have the same covariance matrix based on permutations of the transformed data residuals.
Missing data imputation based on the missForest algorithm (Stekhoven, Daniel J (2012) <doi:10.1093/bioinformatics/btr597>) with adaptations for prediction settings. The function missForest() is used to impute a (training) dataset with missing values and to learn imputation models that can be later used for imputing new observations. The function missForestPredict() is used to impute one or multiple new observations (test set) using the models learned on the training data. For more details see Albu, E., Gao, S., Wynants, L., & Van Calster, B. (2024). missForestPredict--Missing data imputation for prediction settings <doi:10.48550/arXiv.2407.03379>.
Constructs trees for multivariate survival data using marginal and frailty models. Grows, prunes, and selects the best-sized tree.
Multivariate hypothesis tests and confidence intervals...
Test for overall association between microbiome composition data and phenotypes via phylogenetic kernels. The phenotype can be univariate continuous or binary (Zhao et al. (2015) <doi:10.1016/j.ajhg.2015.04.003>), survival outcomes (Plantinga et al. (2017) <doi:10.1186/s40168-017-0239-9>), multivariate (Zhan et al. (2017) <doi:10.1002/gepi.22030>) and structured phenotypes (Zhan et al. (2017) <doi:10.1111/biom.12684>). The package can also use robust regression (unpublished work) and integrated quantile regression (Wang et al. (2021) <doi:10.1093/bioinformatics/btab668>). In each case, the microbiome community effect is modeled nonparametrically through a kernel function, which can incorporate phylogenetic tree information.
This package provides a range of functions for computing both global and local mark correlation functions for spatial point patterns in either Euclidean spaces or on linear networks, with points carrying either real-valued or function-valued marks. For a review of mark correlation functions, see Eckardt and Moradi (2024) <doi:10.1007/s13253-024-00605-1>.
This package provides a complete toolkit to process the Munich ChronoType Questionnaire (MCTQ) for its three versions (standard, micro, and shift). MCTQ is a quantitative and validated tool to assess chronotypes using peoples sleep behavior, originally presented by Till Roenneberg, Anna Wirz-Justice, and Martha Merrow (2003, <doi:10.1177/0748730402239679>).
This package provides an interface to the Maxar Geospatial Platform (MGP) Application Programming Interface. <https://www.maxar.com/maxar-geospatial-platform> It facilitates imagery searches using the MGP Streaming Application Programming Interface via the Web Feature Service (WFS) method, and supports image downloads through Web Map Service (WMS) and Web Map Tile Service (WMTS) Open Geospatial Consortium (OGC) methods. Additionally, it integrates with the Maxar Geospatial Platform Basemaps Application Programming Interface for accessing Maxar basemaps imagery and seamlines. The package also offers seamless integration with the Maxar Geospatial Platform Discovery Application Programming Interface, allowing users to search, filter, and sort Maxar content, while retrieving detailed metadata in formats like SpatioTemporal Asset Catalog (STAC) and GeoJSON.
Maximum likelihood Gaussian process modeling for univariate and multi-dimensional outputs with diagnostic plots following Santner et al (2003) <doi:10.1007/978-1-4757-3799-8>. Contact the maintainer for a package version that includes sensitivity analysis.
Supplementary materials and datasets for the book "Modern Psychometrics With R" (Mair, 2018, Springer useR! series).
This package provides an interface to OpenML.org to list and download machine learning data, tasks and experiments. The OpenML objects can be automatically converted to mlr3 objects. For a more sophisticated interface with more upload options, see the OpenML package.
Computes the degrees of freedom of the lasso, elastic net, generalized elastic net and adaptive lasso based on the generalized path seeking algorithm. The optimal model can be selected by model selection criteria including Mallows Cp, bias-corrected AIC (AICc), generalized cross validation (GCV) and BIC.
Offers a gentle introduction to machine learning concepts for practitioners with a statistical pedigree: decomposition of model error (bias-variance trade-off), nonlinear correlations, information theory and functional permutation/bootstrap simulations. Székely GJ, Rizzo ML, Bakirov NK. (2007). <doi:10.1214/009053607000000505>. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC. (2011). <doi:10.1126/science.1205438>.
This package implements the Multi-Objective Clustering Algorithm Guided by a-Priori Biological Knowledge (MOC-GaPBK) which was proposed by Parraga-Alava, J. et. al. (2018) <doi:10.1186/s13040-018-0178-4>.
This package performs the MRFA approach proposed by Sung et al. (2020) <doi:10.1080/01621459.2019.1595630> to fit and predict nonlinear regression problems, particularly for large-scale and high-dimensional problems. The application includes deterministic or stochastic computer experiments, spatial datasets, and so on.
With foundations on the work by Goutali and Chebana (2024) <doi:10.1016/j.envsoft.2024.106090>, this package contains various univariate and multivariate trend tests. The main functions regard the Multivariate Dependence Trend and Multivariate Overall Trend tests as proposed by Goutali and Chebana (2024), as well as a plotting function that proves useful as a summary and complement of the tests. Although many packages and methods carry univariate tests, the Mann-Kendall and Spearman's rho test implementations are included in the package with an adapted version to hydrological formulation (e.g. as in Rao and Hamed 1998 <doi:10.1016/S0022-1694(97)00125-X> or Chebana 2022 <doi:10.1016/C2021-0-01317-1>). For better understanding of the example use of the functions, three datasets are included. These are synthetic data and shouldn't be used beyond that purpose.
This package provides tools that extend the functionality of the RODBC package to work with Microsoft SQL Server databases. Makes it easier to browse the database and examine individual tables and views.
This package creates sophisticated models of training data and validates the models with an independent test set, cross validation, or Out Of Bag (OOB) predictions on the training data. Create graphs and tables of the model validation results. Applies these models to GIS .img files of predictors to create detailed prediction surfaces. Handles large predictor files for map making, by reading in the .img files in chunks, and output to the .txt file the prediction for each data chunk, before reading the next chunk of data.
The Multivariate Asymptotic Non-parametric Test of Association (MANTA) enables non-parametric, asymptotic P-value computation for multivariate linear models. MANTA relies on the asymptotic null distribution of the PERMANOVA test statistic. P-values are computed using a highly accurate approximation of the corresponding cumulative distribution function. Garrido-Martà n et al. (2022) <doi:10.1101/2022.06.06.493041>.
Meta-analysis of generalized additive models and generalized additive mixed models. A typical use case is when data cannot be shared across locations, and an overall meta-analytic fit is sought. metagam provides functionality for removing individual participant data from models computed using the mgcv and gamm4 packages such that the model objects can be shared without exposing individual data. Furthermore, methods for meta-analysing these fits are provided. The implemented methods are described in Sorensen et al. (2020), <doi:10.1016/j.neuroimage.2020.117416>, extending previous works by Schwartz and Zanobetti (2000) and Crippa et al. (2018) <doi:10.6000/1929-6029.2018.07.02.1>.
This package provides a simple in-memory, LRU cache that can be wrapped around any function to memoize it. The cache is keyed on a hash of the input data (using digest') or on pointer equivalence. Also includes a generic hashmap object that can key on any object type.
Create and integrate thematic maps in your workflow. This package helps to design various cartographic representations such as proportional symbols, choropleth or typology maps. It also offers several functions to display layout elements that improve the graphic presentation of maps (e.g. scale bar, north arrow, title, labels). mapsf maps sf objects on base graphics.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. BEAST2 is commonly accompanied by BEAUti 2 (<https://www.beast2.org>), which, among others, allows one to install BEAST2 package. This package allows to work with BEAST2 packages from R'.