Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Uses recursive partitioning to create homogeneous subgroups based on structural equation models fit in Mplus', a stand-alone program developed by Muthen and Muthen.
Sampling and evaluation methods to apply Monetary Unit Sampling (or in older literature Dollar Unit Sampling) during an audit of financial statements.
This package provides tools to generate random landscape graphs, evaluate species occurrence in dynamic landscapes, simulate future landscape occupation and evaluate range expansion when new empty patches are available (e.g. as a result of climate change). References: Mestre, F., Canovas, F., Pita, R., Mira, A., Beja, P. (2016) <doi:10.1016/j.envsoft.2016.03.007>; Mestre, F., Risk, B., Mira, A., Beja, P., Pita, R. (2017) <doi:10.1016/j.ecolmodel.2017.06.013>; Mestre, F., Pita, R., Mira, A., Beja, P. (2020) <doi:10.1186/s12898-019-0273-5>.
Bindings for hierarchical regression models for use with the parsnip package. Models include longitudinal generalized linear models (Liang and Zeger, 1986) <doi:10.1093/biomet/73.1.13>, and mixed-effect models (Pinheiro and Bates) <doi:10.1007/978-1-4419-0318-1_1>.
Mixture model with overlapping clusters for binary actor-event data. Parameters are estimated in a Bayesian framework. Model and inference are described in Ranciati, Vinciotti, Wit (2017) Modelling actor-event network data via a mixture model under overlapping clusters. Submitted.
This package provides a series of statistical and plotting approaches in microbial community ecology based on the R6 class. The classes are designed for data preprocessing, taxa abundance plotting, alpha diversity analysis, beta diversity analysis, differential abundance test, null model analysis, network analysis, machine learning, environmental data analysis and functional analysis.
Multiple 2 by 2 tables often arise in meta-analysis which combines statistical evidence from multiple studies. Two risks within the same study are possibly correlated because they share some common factors such as environment and population structure. This package implements a set of novel Bayesian approaches for multivariate meta analysis when the risks within the same study are independent or correlated. The exact posterior inference of odds ratio, relative risk, and risk difference given either a single 2 by 2 table or multiple 2 by 2 tables is provided. Luo, Chen, Su, Chu, (2014) <doi:10.18637/jss.v056.i11>, Chen, Luo, (2011) <doi:10.1002/sim.4248>, Chen, Chu, Luo, Nie, Chen, (2015) <doi:10.1177/0962280211430889>, Chen, Luo, Chu, Su, Nie, (2014) <doi:10.1080/03610926.2012.700379>, Chen, Luo, Chu, Wei, (2013) <doi:10.1080/19466315.2013.791483>.
Toolbox and shiny application to help researchers design movement ecology studies, focusing on two key objectives: estimating home range areas, and estimating fine-scale movement behavior, specifically speed and distance traveled. It provides interactive simulations and methodological guidance to support study planning and decision-making. The application is described in Silva et al. (2023) <doi:10.1111/2041-210X.14153>.
Extends the mlr3 package with a backend to transparently work with databases such as SQLite', DuckDB', MySQL', MariaDB', or PostgreSQL'. The package provides three additional backends: DataBackendDplyr relies on the abstraction of package dbplyr to interact with most DBMS. DataBackendDuckDB operates on DuckDB data bases and also on Apache Parquet files. DataBackendPolars operates on Polars data frames.
Friendly implementation of the Mann-Whitney-Wilcoxon test for competitive gene set enrichment analysis.
Shiny for Open Science to visualize, share, and inventory the main existing human datasets for researchers.
This package provides an extensive collection of datasets related to medicine, diseases, treatments, drugs, and public health. This package covers topics such as drug effectiveness, vaccine trials, survival rates, infectious disease outbreaks, and medical treatments. The included datasets span various health conditions, including AIDS, cancer, bacterial infections, and COVID-19, along with information on pharmaceuticals and vaccines. These datasets are sourced from the R ecosystem and other R packages, remaining unaltered to ensure data integrity. This package serves as a valuable resource for researchers, analysts, and healthcare professionals interested in conducting medical and public health data analysis in R.
Calculate the maximal fat oxidation, the exercise intensity that elicits the maximal fat oxidation and the SIN model to represent the fat oxidation kinetics. Three variables can be obtained from the SIN model: dilatation, symmetry and translation. Examples of these methods can be found in Montes de Oca et al (2021) <doi:10.1080/17461391.2020.1788650> and Chenevière et al. (2009) <doi:10.1249/MSS.0b013e31819e2f91>.
This package provides a collection of machine learning helper functions, particularly assisting in the Exploratory Data Analysis phase. Makes heavy use of the data.table package for optimal speed and memory efficiency. Highlights include a versatile bin_data() function, sparsify() for converting a data.table to sparse matrix format with one-hot encoding, fast evaluation metrics, and empirical_cdf() for calculating empirical Multivariate Cumulative Distribution Functions.
The Cauchy distribution is a special case of the t distribution when the degrees of freedom are equal to 1. The functions are related to the multivariate Cauchy distribution and include simulation, computation of the density, maximum likelihood estimation, contour plot of the bivariate Cauchy distribution, and discriminant analysis. References include: Nadarajah S. and Kotz S. (2008). "Estimation methods for the multivariate t distribution". Acta Applicandae Mathematicae, 102(1): 99--118. <doi:10.1007/s10440-008-9212-8>, and Kanti V. Mardia, John T. Kent and John M. Bibby (1979). "Multivariate analysis", ISBN:978-0124712522. Academic Press, London.
Exports two functions implementing multi-way clustering using the method suggested by Cameron, Gelbach, & Miller (2011) and cluster (or block) bootstrapping for estimating variance-covariance matrices. Normal one and two-way clustering matches the results of other common statistical packages. Missing values are handled transparently and rudimentary parallelization support is provided.
This will allow easier management of a CRAN-style repository on local networks (i.e. not on CRAN). This might be necessary where hosted packages contain intellectual property owned by a corporation.
Bayesian estimation of inverse variance weighted (IVW), Burgess et al. (2013) <doi:10.1002/gepi.21758>, and MR-Egger, Bowden et al. (2015) <doi:10.1093/ije/dyv080>, summary data models for Mendelian randomization analyses.
This package provides tools for estimating multivariate probit models, calculating conditional and unconditional expectations, and calculating marginal effects on conditional and unconditional expectations.
Create legends for maps and other graphics. Thematic maps need to be accompanied by legible legends to be fully comprehensible. This package offers a wide range of legends useful for cartography, some of which may also be useful for other types of graphics.
This package provides tools for performing mathematical morphology operations, such as erosion and dilation, on data of arbitrary dimensionality. Can also be used for finding connected components, resampling, filtering, smoothing and other image processing-style operations.
This package provides pipe-style interface for data.table'. Package preserves all data.table features without significant impact on performance. let and take functions are simplified interfaces for most common data manipulation tasks. For example, you can write take(mtcars, mean(mpg), by = am) for aggregation or let(mtcars, hp_wt = hp/wt, hp_wt_mpg = hp_wt/mpg) for modification. Use take_if/let_if for conditional aggregation/modification. Additionally there are some conveniences such as automatic data.frame conversion to data.table'.
Nonparametric survival function estimates and semiparametric regression for the multivariate failure time data with right-censoring. For nonparametric survival function estimates, the Volterra, Dabrowska, and Prentice-Cai estimates for bivariate failure time data may be computed as well as the Dabrowska estimate for the trivariate failure time data. Bivariate marginal hazard rate regression can be fitted for the bivariate failure time data. Functions are also provided to compute (bootstrap) confidence intervals and plot the estimates of the bivariate survival function. For details, see "The Statistical Analysis of Multivariate Failure Time Data: A Marginal Modeling Approach", Prentice, R., Zhao, S. (2019, ISBN: 978-1-4822-5657-4), CRC Press.
Computes the Nelson-Aalen estimator of the cumulative transition hazard for arbitrary Markov multistate models <ISBN:978-0-387-68560-1>.