Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes matching algorithms quickly using Rcpp. Implements the Gale-Shapley Algorithm to compute the stable matching for two-sided markets, such as the stable marriage problem and the college-admissions problem. Implements Irving's Algorithm for the stable roommate problem. Implements the top trading cycle algorithm for the indivisible goods trading problem.
Fit multilevel manifest or latent time-series models, including popular Dynamic Structural Equation Models (DSEM). The models can be set up and modified with user-friendly functions and are fit to the data using Stan for Bayesian inference. Path models and formulas for user-defined models can be easily created with functions using knitr'. Asparouhov, Hamaker, & Muthen (2018) <doi:10.1080/10705511.2017.1406803>.
This package provides a novel mediation analysis approach to address zero-inflated mediators containing true zeros and false zeros. See Jiang et al (2023) "A Novel Causal Mediation Analysis Approach for Zero-Inflated Mediators" <arXiv:2301.10064> for more details.
Consistent user interface to the most common regression and classification algorithms, such as random forest, neural networks, C5 trees and support vector machines, complemented with a handful of auxiliary functions, such as variable importance and a tuning function for the parameters.
Computes efficient data distributions from highly inconsistent datasets with many missing values using multi-set intersections. Based upon hash functions, mulset can quickly identify intersections from very large matrices of input vectors across columns and rows and thus provides scalable solution for dealing with missing values. Tomic et al. (2019) <doi:10.1101/545186>.
This package provides an implementation of methods for multivariate multiple regression with adaptive shrinkage priors as described in F. Morgante et al (2023) <doi:10.1371/journal.pgen.1010539>.
Create an interactive table of descriptive statistics in HTML. This table is typically used for exploratory analysis in a clinical study (referred to as Table 1').
Supports visual interpretation of hierarchical composite endpoints (HCEs). HCEs are complex constructs used as primary endpoints in clinical trials, combining outcomes of different types into ordinal endpoints, in which each patient contributes the most clinically important event (one and only one) to the analysis. See Karpefors M et al. (2022) <doi:10.1177/17407745221134949>.
Pipeline for Genome-Wide Association Study using Multi-Locus Mixed Model from Segura V, Vilhjálmsson BJ et al. (2012) <doi:10.1038/ng.2314>. The pipeline include detection of associated SNPs with MLMM, model selection by lowest eBIC and p-value threshold, estimation of the effects of the SNPs in the selected model and graphical functions.
This package provides several classifiers based on probabilistic models. These classifiers allow to model the dependence structure of continuous features through bivariate copula functions and graphical models, see Salinas-Gutiérrez et al. (2014) <doi:10.1007/s00180-013-0457-y>.
Simulation from an mrgsolve <https://cran.r-project.org/package=mrgsolve> model using a parallel backend. Input data sets are split (chunked) and simulated in parallel using mclapply() or future_lapply() <https://cran.r-project.org/package=future.apply>.
Extends the mlr3 package with a backend to transparently work with databases such as SQLite', DuckDB', MySQL', MariaDB', or PostgreSQL'. The package provides three additional backends: DataBackendDplyr relies on the abstraction of package dbplyr to interact with most DBMS. DataBackendDuckDB operates on DuckDB data bases and also on Apache Parquet files. DataBackendPolars operates on Polars data frames.
The unique function of this package allows representing in a single graph the relative occurrence and co-occurrence of events measured in a sample. As examples, the package was applied to describe the occurrence and co-occurrence of different species of bacterial or viral symbionts infecting arthropods at the individual level. The graphics allows determining the prevalence of each symbiont and the patterns of multiple infections (i.e. how different symbionts share or not the same individual hosts). We named the package after the famous painter as the graphical output recalls Mondrianâ s paintings.
This package provides a system for Analysis of LSD when there is one missing observation. Methods for this process is described in A.M.Gun,M.K.Gupta,B.Dasgupta(2019,ISBN:81-87567-81-3).
This package provides functions and classes to store, manipulate and summarise Monte Carlo Markov Chain (MCMC) samples. For more information see Brooks et al. (2011) <isbn:978-1-4200-7941-8>.
An implementation of MLMC (Multi-Level Monte Carlo), Giles (2008) <doi:10.1287/opre.1070.0496>, Heinrich (1998) <doi:10.1006/jcom.1998.0471>, for R. This package builds on the original Matlab and C++ implementations by Mike Giles to provide a full MLMC driver and example level samplers. Multi-core parallel sampling of levels is provided built-in.
This package contains functions for data analysis of Repeated measurement using GEE. Data may contain missing value in response and covariates. For parameter estimation through Fisher Scoring algorithm, Mean Score and Inverse Probability Weighted method combining with Multiple Imputation are used when there is missing value in covariates/response. Reference for mean score method, inverse probability weighted method is Wang et al(2007)<doi:10.1093/biostatistics/kxl024>.
Lattice functions for drawing folded empirical cumulative distribution plots, or mountain plots. A mountain plot is similar to an empirical CDF plot, except that the curve increases from 0 to 0.5, then decreases from 0.5 to 1 using an inverted scale at the right side. See Monti (1995) <doi:10.1080/00031305.1995.10476179>.
This package performs key functions for MCMC analysis using minimal code - visualizes, manipulates, and summarizes MCMC output. Functions support simple and straightforward subsetting of model parameters within the calls, and produce presentable and publication-ready output. MCMC output may be derived from Bayesian model output fit with Stan, NIMBLE, JAGS, and other software.
Read, inspect and process corpus files for quantitative corpus linguistics. Obtain concordances via regular expressions, tokenize texts, and compute frequencies and association measures. Useful for collocation analysis, keywords analysis and variationist studies (comparison of linguistic variants and of linguistic varieties).
Measure of the Effect ('MOTE') is an effect size calculator, including a wide variety of effect sizes in the mean differences family (all versions of d) and the variance overlap family (eta, omega, epsilon, r). MOTE provides non-central confidence intervals for each effect size, relevant test statistics, and output for reporting in APA Style (American Psychological Association, 2010, <ISBN:1433805618>) with LaTeX'. In research, an over-reliance on p-values may conceal the fact that a study is under-powered (Halsey, Curran-Everett, Vowler, & Drummond, 2015 <doi:10.1038/nmeth.3288>). A test may be statistically significant, yet practically inconsequential (Fritz, Scherndl, & Kühberger, 2012 <doi:10.1177/0959354312436870>). Although the American Psychological Association has long advocated for the inclusion of effect sizes (Wilkinson & American Psychological Association Task Force on Statistical Inference, 1999 <doi:10.1037/0003-066X.54.8.594>), the vast majority of peer-reviewed, published academic studies stop short of reporting effect sizes and confidence intervals (Cumming, 2013, <doi:10.1177/0956797613504966>). MOTE simplifies the use and interpretation of effect sizes and confidence intervals.
Bayesian multivariate age-period-cohort (MAPC) models for analyzing health data, with support for model fitting, visualization, stratification, and model comparison. Inference focuses on identifiable cross-strata differences, as described by Riebler and Held (2010) <doi:10.1093/biostatistics/kxp037>. Methods for handling complex survey data via the survey package are included, as described in Mercer et al. (2014) <doi:10.1016/j.spasta.2013.12.001>.
Transforms, calculates, and presents results from the Mental Health Quality of Life Questionnaire (MHQoL), a measure of health-related quality of life for individuals with mental health conditions. Provides scoring functions, summary statistics, and visualization tools to facilitate interpretation. For more details see van Krugten et al.(2022) <doi:10.1007/s11136-021-02935-w>.
Additional documentation, a package vignette and regression tests for package mlt.