_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-matriz 1.0.1
Propagated dependencies: r-writexl@1.5.4 r-stringr@1.6.0 r-rlang@1.1.6 r-readxl@1.4.5 r-readr@2.1.6 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/jpmonteagudo28/matriz
Licenses: AGPL 3+
Synopsis: Literature Matrix Synthesis Tools for Epidemiology and Health Science Research
Description:

An easy-to-use workflow that provides tools to create, update and fill literature matrices commonly used in research, specifically epidemiology and health sciences research. The project is born out of need as an easyâ toâ use tool for my research methods classes.

r-missinghe 1.5.1
Propagated dependencies: r-r2jags@0.8-9 r-mcmcr@0.6.2 r-loo@2.8.0 r-gridextra@2.3 r-ggthemes@5.1.0 r-ggpubr@0.6.2 r-ggplot2@4.0.1 r-ggmcmc@1.5.1.2 r-coda@0.19-4.1 r-bcea@2.4.83 r-bayesplot@1.14.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=missingHE
Licenses: GPL 2
Synopsis: Missing Outcome Data in Health Economic Evaluation
Description:

This package contains a suite of functions for health economic evaluations with missing outcome data. The package can fit different types of statistical models under a fully Bayesian approach using the software JAGS (which should be installed locally and which is loaded in missingHE via the R package R2jags'). Three classes of models can be fitted under a variety of missing data assumptions: selection models, pattern mixture models and hurdle models. In addition to model fitting, missingHE provides a set of specialised functions to assess model convergence and fit, and to summarise the statistical and economic results using different types of measures and graphs. The methods implemented are described in Mason (2018) <doi:10.1002/hec.3793>, Molenberghs (2000) <doi:10.1007/978-1-4419-0300-6_18> and Gabrio (2019) <doi:10.1002/sim.8045>.

r-metathis 1.1.4
Propagated dependencies: r-purrr@1.2.0 r-magrittr@2.0.4 r-knitr@1.50 r-htmltools@0.5.8.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://pkg.garrickadenbuie.com/metathis/
Licenses: Expat
Synopsis: HTML Metadata Tags for 'R Markdown' and 'Shiny'
Description:

Create meta tags for R Markdown HTML documents and Shiny apps for customized social media cards, for accessibility, and quality search engine indexing. metathis currently supports HTML documents created with rmarkdown', shiny', xaringan', pagedown', bookdown', and flexdashboard'.

r-mortalitylaws 2.1.3
Propagated dependencies: r-tidyr@1.3.1 r-rvest@1.0.5 r-rcurl@1.98-1.17 r-pbapply@1.7-4 r-minpack-lm@1.2-4 r-httr@1.4.7
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/mpascariu/MortalityLaws
Licenses: Expat
Synopsis: Parametric Mortality Models, Life Tables and HMD
Description:

Fit the most popular human mortality laws', and construct full and abridge life tables given various input indices. A mortality law is a parametric function that describes the dying-out process of individuals in a population during a significant portion of their life spans. For a comprehensive review of the most important mortality laws see Tabeau (2001) <doi:10.1007/0-306-47562-6_1>. Practical functions for downloading data from various human mortality databases are provided as well.

r-modeler 3.4.9
Propagated dependencies: r-tailrank@3.2.4 r-rpart@4.1.24 r-randomforest@4.7-1.2 r-oompabase@3.2.10 r-nnet@7.3-20 r-neuralnet@1.44.2 r-e1071@1.7-16 r-classdiscovery@3.4.9 r-classcomparison@3.3.5 r-class@7.3-23
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: http://oompa.r-forge.r-project.org/
Licenses: ASL 2.0
Synopsis: Classes and Methods for Training and Using Binary Prediction Models
Description:

Defines classes and methods to learn models and use them to predict binary outcomes. These are generic tools, but we also include specific examples for many common classifiers.

r-multilevelcoda 1.3.3
Propagated dependencies: r-shinystan@2.6.0 r-shiny@1.11.1 r-plotly@4.11.0 r-loo@2.8.0 r-htmltools@0.5.8.1 r-ggplot2@4.0.1 r-future@1.68.0 r-fs@1.6.6 r-foreach@1.5.2 r-extraoperators@0.3.0 r-emmeans@2.0.0 r-dt@0.34.0 r-dofuture@1.1.2 r-data-table@1.17.8 r-compositions@2.0-9 r-bslib@0.9.0 r-brms@2.23.0 r-bayesplot@1.14.0 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://florale.github.io/multilevelcoda/
Licenses: GPL 3+
Synopsis: Estimate Bayesian Multilevel Models for Compositional Data
Description:

Implement Bayesian multilevel modelling for compositional data. Compute multilevel compositional data and perform log-ratio transforms at between and within-person levels, fit Bayesian multilevel models for compositional predictors and outcomes, and run post-hoc analyses such as isotemporal substitution models. References: Le, Stanford, Dumuid, and Wiley (2025) <doi:10.1037/met0000750>, Le, Dumuid, Stanford, and Wiley (2025) <doi:10.1080/00273171.2025.2565598>.

r-monreg 0.1.4.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://gitlab.com/scottkosty/monreg
Licenses: GPL 2+
Synopsis: Nonparametric Monotone Regression
Description:

Estimates monotone regression and variance functions in a nonparametric model, based on Dette, Holger, Neumeyer, and Pilz (2006) <doi:10.3150/bj/1151525131>.

r-m61r 0.0.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/pv71u98h1/m61r/
Licenses: Expat
Synopsis: Package About Data Manipulation in Pure Base R
Description:

Data manipulation in one package and in base R. Minimal. No dependencies. dplyr and tidyr'-like in one place. Nothing else than base R to build the package.

r-mbnmatime 0.2.6
Dependencies: jags@4.3.1
Propagated dependencies: r-zoo@1.8-14 r-scales@1.4.0 r-rjags@4-17 r-reshape2@1.4.5 r-rdpack@2.6.4 r-r2jags@0.8-9 r-png@0.1-8 r-magrittr@2.0.4 r-lspline@1.0-0 r-knitr@1.50 r-igraph@2.2.1 r-gridextra@2.3 r-ggplot2@4.0.1 r-ggdist@3.3.3 r-dplyr@1.1.4 r-crayon@1.5.3 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://hugaped.github.io/MBNMAtime/
Licenses: GPL 3
Synopsis: Run Time-Course Model-Based Network Meta-Analysis (MBNMA) Models
Description:

Fits Bayesian time-course models for model-based network meta-analysis (MBNMA) that allows inclusion of multiple time-points from studies. Repeated measures over time are accounted for within studies by applying different time-course functions, following the method of Pedder et al. (2019) <doi:10.1002/jrsm.1351>. The method allows synthesis of studies with multiple follow-up measurements that can account for time-course for a single or multiple treatment comparisons. Several general time-course functions are provided; others may be added by the user. Various characteristics can be flexibly added to the models, such as correlation between time points and shared class effects. The consistency of direct and indirect evidence in the network can be assessed using unrelated mean effects models and/or by node-splitting.

r-multimix 1.0-10
Propagated dependencies: r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/jmcurran/multimix
Licenses: GPL 2+
Synopsis: Fit Mixture Models Using the Expectation Maximisation (EM) Algorithm
Description:

This package provides a set of functions which use the Expectation Maximisation (EM) algorithm (Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x> Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, 39(1), 1--22) to take a finite mixture model approach to clustering. The package is designed to cluster multivariate data that have categorical and continuous variables and that possibly contain missing values. The method is described in Hunt, L. and Jorgensen, M. (1999) <doi:10.1111/1467-842X.00071> Australian & New Zealand Journal of Statistics 41(2), 153--171 and Hunt, L. and Jorgensen, M. (2003) <doi:10.1016/S0167-9473(02)00190-1> Mixture model clustering for mixed data with missing information, Computational Statistics & Data Analysis, 41(3-4), 429--440.

r-mediak 1.0
Propagated dependencies: r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MediaK
Licenses: GPL 2+ GPL 3+
Synopsis: Calculate MeDiA_K Distance
Description:

Calculates MeDiA_K (means Mean Distance Association by K-nearest neighbor) in order to detect nonlinear associations.

r-mdw 2024.8-1
Propagated dependencies: r-matrix@1.7-4 r-mass@7.3-65 r-kyotil@2024.11-01
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mdw
Licenses: GPL 2
Synopsis: Maximum Diversity Weighting
Description:

Dimension-reduction methods aim at defining a score that maximizes signal diversity. Three approaches, tree weight, maximum entropy weights, and maximum variance weights are provided. These methods are described in He and Fong (2019) <DOI:10.1002/sim.8212>.

r-mlquantify 0.2.0
Propagated dependencies: r-randomforest@4.7-1.2 r-fnn@1.1.4.1 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/andregustavom/mlquantify
Licenses: GPL 2+
Synopsis: Algorithms for Class Distribution Estimation
Description:

Quantification is a prominent machine learning task that has received an increasing amount of attention in the last years. The objective is to predict the class distribution of a data sample. This package is a collection of machine learning algorithms for class distribution estimation. This package include algorithms from different paradigms of quantification. These methods are described in the paper: A. Maletzke, W. Hassan, D. dos Reis, and G. Batista. The importance of the test set size in quantification assessment. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI20, pages 2640â 2646, 2020. <doi:10.24963/ijcai.2020/366>.

r-miscmetabar 0.14.4
Propagated dependencies: r-rlang@1.1.6 r-purrr@1.2.0 r-phyloseq@1.54.0 r-lifecycle@1.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-dada2@1.38.0 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/adrientaudiere/MiscMetabar
Licenses: AGPL 3
Synopsis: Miscellaneous Functions for Metabarcoding Analysis
Description:

Facilitate the description, transformation, exploration, and reproducibility of metabarcoding analyses. MiscMetabar is mainly built on top of the phyloseq', dada2 and targets R packages. It helps to build reproducible and robust bioinformatics pipelines in R. MiscMetabar makes ecological analysis of alpha and beta-diversity easier, more reproducible and more powerful by integrating a large number of tools. Important features are described in Taudière A. (2023) <doi:10.21105/joss.06038>.

r-mokken 3.1.2
Propagated dependencies: r-rcpp@1.1.0 r-polca@1.6.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://sites.google.com/a/tilburguniversity.edu/avdrark/mokken
Licenses: GPL 2+
Synopsis: Conducts Mokken Scale Analysis
Description:

This package contains functions for performing Mokken scale analysis on test and questionnaire data. It includes an automated item selection algorithm, and various checks of model assumptions.

r-moode 1.1.0
Propagated dependencies: r-rlang@1.1.6 r-rdpack@2.6.4 r-progressr@0.18.0 r-far@0.6-7 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/vkstats/MOODE
Licenses: GPL 3+
Synopsis: Multi-Objective Optimal Design of Experiments
Description:

This package provides functionality to generate compound optimal designs for targeting the multiple experimental objectives directly, ensuring that the full set of research questions is answered as economically as possible. Designs can be found using point or coordinate exchange algorithms combining estimation, inference and lack-of-fit criteria that account for model inadequacy. Details and examples are given by Koutra et al. (2024) <doi:10.48550/arXiv.2412.17158>.

r-mize 0.2.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/jlmelville/mize
Licenses: FSDG-compatible
Synopsis: Unconstrained Numerical Optimization Algorithms
Description:

Optimization algorithms implemented in R, including conjugate gradient (CG), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the limited memory BFGS (L-BFGS) methods. Most internal parameters can be set through the call interface. The solvers hold up quite well for higher-dimensional problems.

r-maxpro 4.1-2
Propagated dependencies: r-nloptr@2.2.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MaxPro
Licenses: LGPL 2.1
Synopsis: Maximum Projection Designs
Description:

Generate maximum projection (MaxPro) designs for quantitative and/or qualitative factors. Details of the MaxPro criterion can be found in: (1) Joseph, Gul, and Ba. (2015) "Maximum Projection Designs for Computer Experiments", Biometrika, 102, 371-380, and (2) Joseph, Gul, and Ba. (2018) "Designing Computer Experiments with Multiple Types of Factors: The MaxPro Approach", Journal of Quality Technology, to appear.

r-missmethods 0.4.0
Propagated dependencies: r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/torockel/missMethods
Licenses: GPL 3
Synopsis: Methods for Missing Data
Description:

Supply functions for the creation and handling of missing data as well as tools to evaluate missing data methods. Nearly all possibilities of generating missing data discussed by Santos et al. (2019) <doi:10.1109/ACCESS.2019.2891360> and some additional are implemented. Functions are supplied to compare parameter estimates and imputed values to true values to evaluate missing data methods. Evaluations of these types are done, for example, by Cetin-Berber et al. (2019) <doi:10.1177/0013164418805532> and Kim et al. (2005) <doi:10.1093/bioinformatics/bth499>.

r-metabodecon 1.6.2
Propagated dependencies: r-withr@3.0.2 r-toscutil@2.8.0 r-speaq@2.7.0 r-readjdx@0.6.4 r-mathjaxr@1.8-0 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/spang-lab/metabodecon/
Licenses: GPL 3+
Synopsis: Deconvolution and Alignment of 1d NMR Spectra
Description:

This package provides a framework for deconvolution, alignment and postprocessing of 1-dimensional (1d) nuclear magnetic resonance (NMR) spectra, resulting in a data matrix of aligned signal integrals. The deconvolution part uses the algorithm described in Koh et al. (2009) <doi:10.1016/j.jmr.2009.09.003>. The alignment part is based on functions from the speaq package, described in Beirnaert et al. (2018) <doi:10.1371/journal.pcbi.1006018> and Vu et al. (2011) <doi:10.1186/1471-2105-12-405>. A detailed description and evaluation of an early version of the package, MetaboDecon1D v0.2.2', can be found in Haeckl et al. (2021) <doi:10.3390/metabo11070452>.

r-mudfold 1.1.21
Propagated dependencies: r-zoo@1.8-14 r-reshape2@1.4.5 r-mgcv@1.9-4 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-broom@1.0.10 r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/cran/mudfold
Licenses: GPL 2+
Synopsis: Multiple UniDimensional unFOLDing
Description:

Nonparametric unfolding item response theory (IRT) model for dichotomous data (see W.H. Van Schuur (1984). Structure in Political Beliefs: A New Model for Stochastic Unfolding with Application to European Party Activists, and W.J.Post (1992). Nonparametric Unfolding Models: A Latent Structure Approach). The package implements MUDFOLD (Multiple UniDimensional unFOLDing), an iterative item selection algorithm that constructs unfolding scales from dichotomous preferential-choice data without explicitly assuming a parametric form of the item response functions. Scale diagnostics from Post(1992) and estimates for the person locations proposed by Johnson(2006) and Van Schuur(1984) are also available. This model can be seen as the unfolding variant of Mokken(1971) scaling method.

r-markerpen 0.1.2
Propagated dependencies: r-rspectra@0.16-2 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=markerpen
Licenses: GPL 2+ GPL 3+
Synopsis: Marker Gene Detection via Penalized Principal Component Analysis
Description:

Implementation of the MarkerPen algorithm, short for marker gene detection via penalized principal component analysis, described in the paper by Qiu, Wang, Lei, and Roeder (2021, <doi:10.1093/bioinformatics/btab257>). MarkerPen is a semi-supervised algorithm for detecting marker genes by combining prior marker information with bulk transcriptome data.

r-mirtest 2.2
Propagated dependencies: r-mass@7.3-65 r-limma@3.66.0 r-globaltest@5.64.0 r-globalancova@4.28.0 r-corpcor@1.6.10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://pubmed.ncbi.nlm.nih.gov/22723856/
Licenses: GPL 2+ GPL 3+
Synopsis: Combined miRNA- And mRNA-Testing
Description:

Package for combined miRNA- and mRNA-testing.

r-modtools 0.9.13
Propagated dependencies: r-survival@3.8-3 r-sandwich@3.1-1 r-rpart-plot@3.1.3 r-rpart@4.1.24 r-robustbase@0.99-6 r-relaimpo@2.2-7 r-randomforest@4.7-1.2 r-pscl@1.5.9 r-proc@1.19.0.1 r-nnet@7.3-20 r-neuralnettools@1.5.3 r-naivebayes@1.0.0 r-mass@7.3-65 r-lmtest@0.9-40 r-lattice@0.22-7 r-e1071@1.7-16 r-desctools@0.99.60 r-class@7.3-23 r-car@3.1-3 r-c50@0.2.0 r-boot@1.3-32 r-aer@1.2-15
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://andrisignorell.github.io/ModTools/
Licenses: GPL 2+
Synopsis: Building Regression and Classification Models
Description:

Consistent user interface to the most common regression and classification algorithms, such as random forest, neural networks, C5 trees and support vector machines, complemented with a handful of auxiliary functions, such as variable importance and a tuning function for the parameters.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208