Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows the estimation and downstream statistical analysis of the mitochondrial DNA Heteroplasmy calculated from single-cell datasets <https://github.com/ScialdoneLab/MitoHEAR/tree/master>.
Following the common types of measures of uncertainty for parameter estimation, two measures of uncertainty were proposed for model selection, see Liu, Li and Jiang (2020) <doi:10.1007/s11749-020-00737-9>. The first measure is a kind of model confidence set that relates to the variation of model selection, called Mac. The second measure focuses on error of model selection, called LogP. They are all computed via bootstrapping. This package provides functions to compute these two measures. Furthermore, a similar model confidence set adapted from Bayesian Model Averaging can also be computed using this package.
Computation of standardized interquartile range (IQR), Huber-type skipped mean (Hampel (1985), <doi:10.2307/1268758>), robust coefficient of variation (CV) (Arachchige et al. (2019), <doi:10.48550/arXiv.1907.01110>), robust signal to noise ratio (SNR), z-score, standardized mean difference (SMD), as well as functions that support graphical visualization such as boxplots based on quartiles (not hinges), negative logarithms and generalized logarithms for ggplot2 (Wickham (2016), ISBN:978-3-319-24277-4).
Simple tools to perform mixture optimization based on the desirability package by Max Kuhn. It also provides a plot routine using ggplot2 and patchwork'.
Estimate parameters of linear regression and logistic regression with missing covariates with missing data, perform model selection and prediction, using EM-type algorithms. Jiang W., Josse J., Lavielle M., TraumaBase Group (2020) <doi:10.1016/j.csda.2019.106907>.
Given a vector of multivariate normal data, a matrix of covariates and the data covariance matrix, generate new multivariate normal samples that have the same covariance matrix based on permutations of the transformed data residuals.
This package provides a function that wraps mcparallel() and mccollect() from parallel with temporary variables and a task handler. Wrapped in this way the results of an mcparallel() call can be returned to the R session when the fork is complete without explicitly issuing a specific mccollect() to retrieve the value. Outside of top-level tasks, multiple mcparallel() jobs can be retrieved with a single call to mcparallelDoCheck().
Provide a sample size calculator for micro-randomized trials (MRTs) based on methodology developed in Sample Size Calculations for Micro-randomized Trials in mHealth by Liao et al. (2016) <DOI:10.1002/sim.6847>.
Fast moment-based hierarchical model fitting. Implements methods from the papers "Fast Moment-Based Estimation for Hierarchical Models," by Perry (2017) and "Fitting a Deeply Nested Hierarchical Model to a Large Book Review Dataset Using a Moment-Based Estimator," by Zhang, Schmaus, and Perry (2018).
This package provides tools to solve real-world problems with multiple classes classifications by computing the areas under ROC and PR curve via micro-averaging and macro-averaging. The vignettes of this package can be found via <https://github.com/WandeRum/multiROC>. The methodology is described in V. Van Asch (2013) <https://www.clips.uantwerpen.be/~vincent/pdf/microaverage.pdf> and Pedregosa et al. (2011) <http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html>.
Parses information from text files with specific utility aimed at pulling information from Med Associate's (MPC) files. These functions allow for further analysis of MPC files.
Website generator with HTML summaries for predictive models. This package uses DALEX explainers to describe global model behavior. We can see how well models behave (tabs: Model Performance, Auditor), how much each variable contributes to predictions (tabs: Variable Response) and which variables are the most important for a given model (tabs: Variable Importance). We can also compare Concept Drift for pairs of models (tabs: Drifter). Additionally, data available on the website can be easily recreated in current R session. Work on this package was financially supported by the NCN Opus grant 2017/27/B/ST6/01307 at Warsaw University of Technology, Faculty of Mathematics and Information Science.
Analyzes non-normal data via the Multiple Comparison Procedures and Modeling approach (MCP-Mod). Many functions rely on the DoseFinding package. This package makes it so the user does not need to provide or calculate the mu vector and S matrix. Instead, the user typically supplies the data in its raw form, and this package will calculate the needed objects and passes them into the DoseFinding functions. If the user wishes to primarily use the functions provided in the DoseFinding package, a singular function (prepareGen()) will provide mu and S. The package currently handles power analysis and the MCP-Mod procedure for negative binomial, Poisson, and binomial data. The MCP-Mod procedure can also be applied to survival data, but power analysis is not available. Bretz, F., Pinheiro, J. C., and Branson, M. (2005) <doi:10.1111/j.1541-0420.2005.00344.x>. Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997) <doi:10.2307/2533961>. Pinheiro, J. C., Bornkamp, B., Glimm, E. and Bretz, F. (2014) <doi:10.1002/sim.6052>.
Simulation, analysis and sampling of spatial biodiversity data (May, Gerstner, McGlinn, Xiao & Chase 2017) <doi:10.1111/2041-210x.12986>. In the simulation tools user define the numbers of species and individuals, the species abundance distribution and species aggregation. Functions for analysis include species rarefaction and accumulation curves, species-area relationships and the distance decay of similarity.
This package provides tools to conduct Monte Carlo simulations under different conditions (e.g., varying sample size, data normality) for structural equation models (SEMs). Data can be simulated based on user-defined factor loadings and correlations, with optional non-normality added via Fleishman's power method (1978) <doi:10.1007/BF02293811>. Once generated, models can be estimated using lavaan'. This package facilitates testing model performance across multiple simulation scenarios. When data generation is completed (or when generated data sets are given) model tests can also be run. Please cite as "Orçan, F. (2021). MonteCarloSEM An R Package to Simulate Data for SEM. International Journal of Assessment Tools in Education, 8 (3), 704-713.".
66 data sets that were imported using read.table() where appropriate but more commonly after converting to a csv file for importing via read.csv().
This package implements a generalization of the Cochran-Armitage trend test to multinomial data. In addition to an overall test, multiple testing adjusted p-values for trend in individual outcomes and power calculation is available.
Fitting multivariate response models with random effects on one or two levels; whereby the (one-dimensional) random effect represents a latent variable approximating the multivariate space of outcomes, after possible adjustment for covariates. The method is particularly useful for multivariate, highly correlated outcome variables with unobserved heterogeneities. Applications include regression with multivariate responses, as well as multivariate clustering or ranking problems. See Zhang and Einbeck (2024) <doi:10.1007/s42519-023-00357-0>.
The Washington Metropolitan Area Transit Authority is a government agency operating light rail and passenger buses in the Washington D.C. area. With a free developer account, access their Metro Transparent Data Sets API <https://developer.wmata.com/> to return data frames of transit data for easy analysis.
This package implements the moment-matching approximation for differences of non-standardized t-distributed random variables in both univariate and multivariate settings. The package provides density, distribution function, quantile function, and random generation for the approximated distributions of t-differences. The methodology establishes the univariate approximated distributions through the systematic matching of the first, second, and fourth moments, and extends it to multivariate cases, considering both scenarios of independent components and the more general multivariate t-distributions with arbitrary dependence structures. Methods build on the classical moment-matching approximation method (e.g., Casella and Berger (2024) <doi:10.1201/9781003456285>).
Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of several type of toxicological data. binary (e.g., survival, mobility), count (e.g., reproduction) and continuous (e.g., growth as length, weight). Estimation procedures can be used without a deep knowledge of their underlying probabilistic model or inference methods. Rather, they were designed to behave as well as possible without requiring a user to provide values for some obscure parameters. That said, models can also be used as a first step to tailor new models for more specific situations.
This package implements methods to normalize multiplexed imaging data, including statistical metrics and visualizations to quantify technical variation in this data type. Reference for methods listed here: Harris, C., Wrobel, J., & Vandekar, S. (2022). mxnorm: An R Package to Normalize Multiplexed Imaging Data. Journal of Open Source Software, 7(71), 4180, <doi:10.21105/joss.04180>.
This package provides methods for high-dimensional multi-view learning based on the multi-view stacking (MVS) framework. For technical details on the MVS and stacked penalized logistic regression (StaPLR) methods see Van Loon, Fokkema, Szabo, & De Rooij (2020) <doi:10.1016/j.inffus.2020.03.007> and Van Loon et al. (2022) <doi:10.3389/fnins.2022.830630>.
This package provides a set of functions to manage data shared on a MOLGENIS Armadillo server.