Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Visualization of decision rules for binary classification and Receiver Operating Characteristic (ROC) curve estimation under different generalizations proposed in the literature: - making the classification subsets flexible to cover those scenarios where both extremes of the marker are associated with a higher risk of being positive, considering two thresholds (gROC() function); - transforming the marker by a proper function trying to improve the classification performance (hROC() function); - when dealing with multivariate markers, considering a proper transformation to univariate space trying to maximize the resulting AUC of the TPR for each FPR (multiROC() function). The classification regions behind each point of the ROC curve are displayed in both static graphics (plot_buildROC(), plot_regions() or plot_funregions() function) or videos (movieROC() function).
Tool for easy prior construction and visualization. It helps to formulates joint prior distributions for variance parameters in latent Gaussian models. The resulting prior is robust and can be created in an intuitive way. A graphical user interface (GUI) can be used to choose the joint prior, where the user can click through the model and select priors. An extensive guide is available in the GUI. The package allows for direct inference with the specified model and prior. Using a hierarchical variance decomposition, we formulate a joint variance prior that takes the whole model structure into account. In this way, existing knowledge can intuitively be incorporated at the level it applies to. Alternatively, one can use independent variance priors for each model components in the latent Gaussian model. Details can be found in the accompanying scientific paper: Hem, Fuglstad, Riebler (2024, Journal of Statistical Software, <doi:10.18637/jss.v110.i03>).
Estimates the precision of transdimensional Markov chain Monte Carlo (MCMC) output, which is often used for Bayesian analysis of models with different dimensionality (e.g., model selection). Transdimensional MCMC (e.g., reversible jump MCMC) relies on sampling a discrete model-indicator variable to estimate the posterior model probabilities. If only few switches occur between the models, precision may be low and assessment based on the assumption of independent samples misleading. Based on the observed transition matrix of the indicator variable, the method of Heck, Overstall, Gronau, & Wagenmakers (2019, Statistics & Computing, 29, 631-643) <doi:10.1007/s11222-018-9828-0> draws posterior samples of the stationary distribution to (a) assess the uncertainty in the estimated posterior model probabilities and (b) estimate the effective sample size of the MCMC output.
Estimates exponential-family random graph models for multilevel network data, assuming the multilevel structure is observed. The scope, at present, covers multilevel models where the set of nodes is nested within known blocks. The estimation method uses Monte-Carlo maximum likelihood estimation (MCMLE) methods to estimate a variety of canonical or curved exponential family models for binary random graphs. MCMLE methods for curved exponential-family random graph models can be found in Hunter and Handcock (JCGS, 2006). The package supports parallel computing, and provides methods for assessing goodness-of-fit of models and visualization of networks.
This package provides methods for the analysis of how ecological drivers affect the multifunctionality of an ecosystem based on methods of Byrnes et al. 2016 <doi:10.1111/2041-210X.12143> and Byrnes et al. 2022 <doi:10.1101/2022.03.17.484802>. Most standard methods in the literature are implemented (see vignettes) in a tidy format.
Calculate various indices, like Crude Migration Rate, different Gini indices or the Coefficient of Variation among others, to show the (un)equality of migration.
This package implements the algorithm of Remez (1962) for polynomial minimax approximation and of Cody et al. (1968) <doi:10.1007/BF02162506> for rational minimax approximation.
This package provides a generalization of the Synth package that is designed for data at a more granular level (e.g., micro-level). Provides functions to construct weights (including propensity score-type weights) and run analyses for synthetic control methods with micro- and meso-level data; see Robbins, Saunders, and Kilmer (2017) <doi:10.1080/01621459.2016.1213634> and Robbins and Davenport (2021) <doi:10.18637/jss.v097.i02>.
Three main functions about analyzing massive data (missing observations are allowed) considered from multiple layers of categories are demonstrated. Flexible and diverse applications of the function parameters make the data analyses powerful.
Comprehensive network analysis package. Calculate correlation network fastly, accelerate lots of analysis by parallel computing. Support for multi-omics data, search sub-nets fluently. Handle bigger data, more than 10,000 nodes in each omics. Offer various layout method for multi-omics network and some interfaces to other software ('Gephi', Cytoscape', ggplot2'), easy to visualize. Provide comprehensive topology indexes calculation, including ecological network stability.
Discover OpenID Connect endpoints and authenticate using device flow. Used by MOLGENIS packages.
Given independent and identically distributed observations X(1), ..., X(n) from a density f, provides five methods to perform a multiscale analysis about f as well as the necessary critical values. The first method, introduced in Duembgen and Walther (2008), provides simultaneous confidence statements for the existence and location of local increases (or decreases) of f, based on all intervals I(all) spanned by any two observations X(j), X(k). The second method approximates the latter approach by using only a subset of I(all) and is therefore computationally much more efficient, but asymptotically equivalent. Omitting the additive correction term Gamma in either method offers another two approaches which are more powerful on small scales and less powerful on large scales, however, not asymptotically minimax optimal anymore. Finally, the block procedure is a compromise between adding Gamma or not, having intermediate power properties. The latter is again asymptotically equivalent to the first and was introduced in Rufibach and Walther (2010).
Multiple contrast tests and simultaneous confidence intervals based on normal approximation. With implementations for binomial proportions in a 2xk setting (risk difference and odds ratio), poly-3-adjusted tumour rates, biodiversity indices (multinomial data) and expected values under lognormal assumption. Approximative power calculation for multiple contrast tests of binomial and Gaussian data.
This package provides tools specifically designed for analyzing longitudinal microbiome data. This tool integrates seven functional modules, providing a systematic framework for microbiome time-series analysis. For more details on inferences involving interspecies interactions see Fisher (2014) <doi:10.1371/journal.pone.0102451>. Details on this package are also described in an unpublished manuscript.
Create dummy variables from categorical data. This package can convert categorical data (factor and ordered) into dummy variables and handle multiple columns simultaneously. This package enables to select whether a dummy variable for base group is included (for principal component analysis/factor analysis) or excluded (for regression analysis) by an option. makedummies function accepts data.frame', matrix', and tbl (tibble) class (by tibble package). matrix class data is automatically converted to data.frame class.
It implements a new procedure of variable selection in the context of redundancy between explanatory variables, which holds true with high dimensional data (Grimonprez et al. (2023) <doi:10.18637/jss.v106.i03>).
Modified functions of the package pcalg and some additional functions to run the PC and the FCI (Fast Causal Inference) algorithm for constraint-based causal discovery in incomplete and multiply imputed datasets. Foraita R, Friemel J, Günther K, Behrens T, Bullerdiek J, Nimzyk R, Ahrens W, Didelez V (2020) <doi:10.1111/rssa.12565>; Andrews RM, Bang CW, Didelez V, Witte J, Foraita R (2021) <doi:10.1093/ije/dyae113>; Witte J, Foraita R, Didelez V (2022) <doi:10.1002/sim.9535>.
This package provides a collection of functions to do some statistical inferences. On estimation, it has the function to get the method of moments estimates, the sampling interval. In terms of testing it has function of doing most powerful test.
Nonparametric estimation and inference of a non-decreasing monotone hazard ratio from a right censored survival dataset. The estimator is based on a generalized Grenander typed estimator, and the inference procedure relies on direct plugin estimation of a first order derivative. More details please refer to the paper "Nonparametric inference under a monotone hazard ratio order" by Y. Wu and T. Westling (2023) <doi:10.1214/23-EJS2173>.
Several classes for moment-based models are defined. The classes are defined for moment conditions derived from a single equation or a system of equations. The conditions can also be expressed as functions or formulas. Several methods are also offered to facilitate the development of different estimation techniques. The methods that are currently provided are the Generalized method of moments (Hansen 1982; <doi:10.2307/1912775>), for single equations and systems of equation, and the Generalized Empirical Likelihood (Smith 1997; <doi:10.1111/j.0013-0133.1997.174.x>, Kitamura 1997; <doi:10.1214/aos/1069362388>, Newey and Smith 2004; <doi:10.1111/j.1468-0262.2004.00482.x>, and Anatolyev 2005 <doi:10.1111/j.1468-0262.2005.00601.x>). Some work is being done to add tools to deal with weak and/or many instruments. This includes K-Class estimators (Limited Information Maximum Likelihood and Fuller), Anderson and Rubin statistic test, etc.
Extends multiverse package (Sarma A., Kale A., Moon M., Taback N., Chevalier F., Hullman J., Kay M., 2021) <doi:10.31219/osf.io/yfbwm>, which allows users perform to create explorable multiverse analysis in R. This extension provides an additional level of abstraction to the multiverse package with the aim of creating user friendly syntax to researchers, educators, and students in statistics. The mverse syntax is designed to allow piping and takes hints from the tidyverse grammar. The package allows users to define and inspect multiverse analysis using familiar syntax in R.
This package provides classes and calculation and plotting functions for metrology applications, including measurement uncertainty estimation and inter-laboratory metrology comparison studies.
Create native charts for Microsoft PowerPoint and Microsoft Word documents. These can then be edited and annotated. Functions are provided to let users create charts, modify and format their content. The chart's underlying data is automatically saved within the Word document or PowerPoint presentation. It extends package officer that does not contain any feature for Microsoft native charts production.
This package provides functions to estimate weather variables at any position of a landscape [De Caceres et al. (2018) <doi:10.1016/j.envsoft.2018.08.003>].