Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computation of the multivariate marine recovery index, including functions for data visualization and ecological diagnostics of marine ecosystems. The computational details are described in the original publication. Reference: Chauvel, N., Grall, J., Thiébaut, E., Houbin, C., Pezy, J.P. (in press). "A general-purpose Multivariate Marine Recovery Index for quantifying the influence of human activities on benthic habitat ecological status". Ecological Indicators.
This package provides a macro language for R programs, which provides a macro facility similar to SAS®'. This package contains basic macro capabilities like defining macro variables, executing conditional logic, and defining macro functions.
This package provides methods for detecting signals related to (adverse event, medical product e.g. drugs, vaccines) pairs, a data generation function for simulating pharmacovigilance datasets, and various utility functions. For more details please see Liu A., Mukhopadhyay R., and Markatou M. <doi:10.48550/arXiv.2410.01168>.
Sentiment analysis is a popular technique in text mining that attempts to determine the emotional state of some text. We provide a new implementation of a common method for computing sentiment, whereby words are scored as positive or negative according to a dictionary lookup. Then the sum of those scores is returned for the document. We use the Hu and Liu sentiment dictionary ('Hu and Liu', 2004) <doi:10.1145/1014052.1014073> for determining sentiment. The scoring function is vectorized by document, and scores for multiple documents are computed in parallel via OpenMP'.
Frequentist and Bayesian linear regression for large data sets. Useful when the data does not fit into memory (for both frequentist and Bayesian regression), to make running time manageable (mainly for Bayesian regression), and to reduce the total running time because of reduced or less severe memory-spillover into the virtual memory. This is an implementation of Merge & Reduce for linear regression as described in Geppert, L.N., Ickstadt, K., Munteanu, A., & Sohler, C. (2020). Streaming statistical models via Merge & Reduce'. International Journal of Data Science and Analytics, 1-17, <doi:10.1007/s41060-020-00226-0>.
This package provides a simple and effective tool for computing and visualizing statistical power for meta-analysis, including power analysis of main effects (Jackson & Turner, 2017)<doi:10.1002/jrsm.1240>, test of homogeneity (Pigott, 2012)<doi:10.1007/978-1-4614-2278-5>, subgroup analysis, and categorical moderator analysis (Hedges & Pigott, 2004)<doi:10.1037/1082-989X.9.4.426>.
This package provides a compilation of more than 80 functions designed to quantitatively and visually evaluate prediction performance of regression (continuous variables) and classification (categorical variables) of point-forecast models (e.g. APSIM, DSSAT, DNDC, supervised Machine Learning). For regression, it includes functions to generate plots (scatter, tiles, density, & Bland-Altman plot), and to estimate error metrics (e.g. MBE, MAE, RMSE), error decomposition (e.g. lack of accuracy-precision), model efficiency (e.g. NSE, E1, KGE), indices of agreement (e.g. d, RAC), goodness of fit (e.g. r, R2), adjusted correlation coefficients (e.g. CCC, dcorr), symmetric regression coefficients (intercept, slope), and mean absolute scaled error (MASE) for time series predictions. For classification (binomial and multinomial), it offers functions to generate and plot confusion matrices, and to estimate performance metrics such as accuracy, precision, recall, specificity, F-score, Cohen's Kappa, G-mean, and many more. For more details visit the vignettes <https://adriancorrendo.github.io/metrica/>.
This package provides tools for econometric analysis and economic modelling with the traditional two-input Constant Elasticity of Substitution (CES) function and with nested CES functions with three and four inputs. The econometric estimation can be done by the Kmenta approximation, or non-linear least-squares using various gradient-based or global optimisation algorithms. Some of these algorithms can constrain the parameters to certain ranges, e.g. economically meaningful values. Furthermore, the non-linear least-squares estimation can be combined with a grid-search for the rho-parameter(s). The estimation methods are described in Henningsen et al. (2021) <doi:10.4337/9781788976480.00030>.
This package provides probability mass, distribution, quantile, random variate generation, and method-of-moments parameter fitting for the MBBEFD family of distributions used in insurance modeling as described in Bernegger (1997) <doi:10.2143/AST.27.1.563208> without any external dependencies.
Access to several Numerical Weather Prediction services both in raster format and as a time series for a location. Currently it works with GFS <https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast>, MeteoGalicia <https://www.meteogalicia.gal/web/modelos/threddsIndex.action>, NAM <https://www.ncei.noaa.gov/products/weather-climate-models/north-american-mesoscale>, and RAP <https://www.ncei.noaa.gov/products/weather-climate-models/rapid-refresh-update>.
Several functions can be used to analyze multiblock multivariable data. If the input is a single matrix, then principal components analysis (PCA) is implemented. If the input is a list of matrices, then multiblock PCA is implemented. If the input is two matrices, for exploratory and objective variables, then partial least squares (PLS) analysis is implemented. If the input is two lists of matrices, for exploratory and objective variables, then multiblock PLS analysis is implemented. Additionally, if an extra outcome variable is specified, then a supervised version of the methods above is implemented. For each method, sparse modeling is also incorporated. Functions for selecting the number of components and regularized parameters are also provided.
The Washington Metropolitan Area Transit Authority is a government agency operating light rail and passenger buses in the Washington D.C. area. With a free developer account, access their Metro Transparent Data Sets API <https://developer.wmata.com/> to return data frames of transit data for easy analysis.
This package provides a set of easy-to-use functions for computing the Multidimensional Poverty Index (MPI).
Various functions for random number generation, density estimation, classification, curve fitting, and spatial data analysis.
Computes mutual information matrices from continuous, categorical and survival variables, as well as feature selection with minimum redundancy, maximum relevance (mRMR) and a new ensemble mRMR technique. Published in De Jay et al. (2013) <doi:10.1093/bioinformatics/btt383>.
This package provides a collection of statistical tests for the detection of differential item functioning (DIF) in multistage tests. Methods entail logistic regression, an adaptation of the simultaneous item bias test (SIBTEST), and various score-based tests. The presented tests provide itemwise test for DIF along categorical, ordinal or metric covariates. Methods for uniform and non-uniform DIF effects are available depending on which method is used.
Quantitative RT-PCR data are analyzed using generalized linear mixed models based on lognormal-Poisson error distribution, fitted using MCMC. Control genes are not required but can be incorporated as Bayesian priors or, when template abundances correlate with conditions, as trackers of global effects (common to all genes). The package also implements a lognormal model for higher-abundance data and a "classic" model involving multi-gene normalization on a by-sample basis. Several plotting functions are included to extract and visualize results. The detailed tutorial is available here: <https://matzlab.weebly.com/uploads/7/6/2/2/76229469/mcmc.qpcr.tutorial.v1.2.4.pdf>.
Build spatially and temporally explicit process-based species distribution models, that can include an arbitrary number of environmental factors, species and processes including metabolic constraints and species interactions. The focus of the package is simulating populations of one or multiple species in a grid-based landscape and studying the meta-population dynamics and emergent patterns that arise from the interaction of species under complex environmental conditions. It provides functions for common ecological processes such as negative exponential, kernel-based dispersal (see Nathan et al. (2012) <doi:10.1093/acprof:oso/9780199608898.003.0015>), calculation of the environmental suitability based on cardinal values ( Yin et al. (1995) <doi:10.1016/0168-1923(95)02236-Q>, simplified by Yan and Hunt (1999) <doi:10.1006/anbo.1999.0955> see eq: 4), reproduction in form of an Ricker model (see Ricker (1954) <doi:10.1139/f54-039> and Cabral and Schurr (2010) <doi:10.1111/j.1466-8238.2009.00492.x>), as well as metabolic scaling based on the metabolic theory of ecology (see Brown et al. (2004) <doi:10.1890/03-9000> and Brown, Sibly and Kodric-Brown (2012) <doi:10.1002/9781119968535.ch>).
Package for fast computation of the maximum kernel likelihood estimator (mkle).
Fit multi-level models with possibly correlated random effects using Markov Chain Monte Carlo simulation. Such models allow smoothing over space and time and are useful in, for example, small area estimation.
Using this package, one can determine the minimum sample size required so that the mean square error of the sample mean and the population mean of a distribution becomes less than some pre-determined epsilon, i.e. it helps the user to determine the minimum sample size required to attain the pre-fixed precision level by minimizing the difference between the sample mean and population mean.
Generates derived parameter(s) from Monte Carlo Markov Chain (MCMC) samples using R code. This allows Bayesian models to be fitted without the inclusion of derived parameters which add unnecessary clutter and slow model fitting. For more information on MCMC samples see Brooks et al. (2011) <isbn:978-1-4200-7941-8>.
This package provides methods and tools for mixed frequency time series data analysis. Allows estimation, model selection and forecasting for MIDAS regressions.
This is the core package offering a portal to the many packages universe. It includes functions to help researchers access, work across, and maintain ensembles of datasets on global governance called datacubes.