_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-mcen 1.2.1
Propagated dependencies: r-matrix@1.7-4 r-glmnet@4.1-10 r-flexclust@1.5.0 r-faraway@1.0.9
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mcen
Licenses: Expat
Synopsis: Multivariate Cluster Elastic Net
Description:

Fits the Multivariate Cluster Elastic Net (MCEN) presented in Price & Sherwood (2018) <arXiv:1707.03530>. The MCEN model simultaneously estimates regression coefficients and a clustering of the responses for a multivariate response model. Currently accommodates the Gaussian and binomial likelihood.

r-multigraphr 0.2.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/termehs/multigraphr
Licenses: Expat
Synopsis: Probability Models and Statistical Analysis of Random Multigraphs
Description:

This package provides methods and models for analysing multigraphs as introduced by Shafie (2015) <doi:10.21307/joss-2019-011>, including methods to study local and global properties <doi:10.1080/0022250X.2016.1219732> and goodness of fit tests.

r-michelrodange 1.0.0
Propagated dependencies: r-magrittr@2.0.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/b-rodrigues/michelRodange
Licenses: CC0
Synopsis: The Works (in Luxembourguish) of Michel Rodange
Description:

Michel Rodange was a Luxembourguish writer and poet who lived in the 19th century. His most notable work is Rodange (1872, ISBN:1166177424), ("Renert oder de Fuuà am Frack an a Ma'nsgrëà t"), but he also wrote many more works, including Rodange, Tockert (1928) <https://www.autorenlexikon.lu/page/document/361/3614/1/FRE/index.html> ("D'Léierchen - Dem Léiweckerche säi Lidd") and Rodange, Welter (1929) <https://www.autorenlexikon.lu/page/document/361/3615/1/FRE/index.html> ("Dem Grow Sigfrid seng Goldkuommer"). This package contains three datasets, each made from the plain text versions of his works available on <https://data.public.lu/fr/datasets/the-works-in-luxembourguish-of-michel-rodange/>.

r-monotonehazardratio 0.2.0
Propagated dependencies: r-survival@3.8-3 r-kernsmooth@2.23-26 r-fdrtool@1.2.18
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/Yujian-Wu/MonotoneHazardRatio
Licenses: Expat
Synopsis: Nonparametric Estimation and Inference of a Monotone Hazard Ratio Function
Description:

Nonparametric estimation and inference of a non-decreasing monotone hazard ratio from a right censored survival dataset. The estimator is based on a generalized Grenander typed estimator, and the inference procedure relies on direct plugin estimation of a first order derivative. More details please refer to the paper "Nonparametric inference under a monotone hazard ratio order" by Y. Wu and T. Westling (2023) <doi:10.1214/23-EJS2173>.

r-mjmbamlss 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-statmod@1.5.1 r-sparseflmm@0.4.2 r-refund@0.1-38 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-mvtnorm@1.3-3 r-mgcv@1.9-4 r-mfpca@1.3-11 r-matrix@1.7-4 r-gamm4@0.2-7 r-fundata@1.3-9 r-foreach@1.5.2 r-fdapace@0.6.0 r-coda@0.19-4.1 r-bamlss@1.2-5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MJMbamlss
Licenses: GPL 3
Synopsis: Multivariate Joint Models with 'bamlss'
Description:

Multivariate joint models of longitudinal and time-to-event data based on functional principal components implemented with bamlss'. Implementation for Volkmann, Umlauf, Greven (2023) <arXiv:2311.06409>.

r-mapfit 1.0.0
Propagated dependencies: r-rcpp@1.1.0 r-r6@2.6.1 r-matrix@1.7-4 r-deformula@0.1.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/okamumu/mapfit
Licenses: Expat
Synopsis: PH/MAP Parameter Estimation
Description:

Estimation methods for phase-type distribution (PH) and Markovian arrival process (MAP) from empirical data (point and grouped data) and density function. The tool is based on the following researches: Okamura et al. (2009) <doi:10.1109/TNET.2008.2008750>, Okamura and Dohi (2009) <doi:10.1109/QEST.2009.28>, Okamura et al. (2011) <doi:10.1016/j.peva.2011.04.001>, Okamura et al. (2013) <doi:10.1002/asmb.1919>, Horvath and Okamura (2013) <doi:10.1007/978-3-642-40725-3_10>, Okamura and Dohi (2016) <doi:10.15807/jorsj.59.72>.

r-mcvis 1.0.8
Propagated dependencies: r-shiny@1.11.1 r-rlang@1.1.6 r-reshape2@1.4.5 r-purrr@1.2.0 r-psych@2.5.6 r-magrittr@2.0.4 r-igraph@2.2.1 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mcvis
Licenses: GPL 3
Synopsis: Multi-Collinearity Visualization
Description:

Visualize the relationship between linear regression variables and causes of multi-collinearity. Implements the method in Lin et. al. (2020) <doi:10.1080/10618600.2020.1779729>.

r-metacart 3.0.4
Propagated dependencies: r-rpart@4.1.24 r-rcpp@1.1.0 r-gridextra@2.3 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metacart
Licenses: GPL 2+
Synopsis: Meta-CART: A Flexible Approach to Identify Moderators in Meta-Analysis
Description:

Meta-CART integrates classification and regression trees (CART) into meta-analysis. Meta-CART is a flexible approach to identify interaction effects between moderators in meta-analysis. The method is described in Dusseldorp et al. (2014) <doi:10.1037/hea0000018> and Li et al. (2017) <doi:10.1111/bmsp.12088>.

r-musclesynergies 1.2.5
Propagated dependencies: r-umap@0.2.10.0 r-signal@1.8-1 r-reshape2@1.4.5 r-proxy@0.4-27 r-plyr@1.8.9 r-gridextra@2.3 r-ggplot2@4.0.1 r-fnn@1.1.4.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/alesantuz/musclesyneRgies
Licenses: Expat
Synopsis: Extract Muscle Synergies from Electromyography
Description:

This package provides a framework to factorise electromyography (EMG) data. Tools are provided for raw data pre-processing, non negative matrix factorisation, classification of factorised data and plotting of obtained outcomes. In particular, reading from ASCII files is supported, along with wide-used filtering approaches to process EMG data. All steps include one or more sensible defaults that aim at simplifying the workflow. Yet, all functions are largely tunable at need. Example data sets are included.

r-marsgwr 0.1.0
Propagated dependencies: r-qpdf@1.4.1 r-numbers@0.9-2 r-earth@5.3.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MARSGWR
Licenses: GPL 2+
Synopsis: Hybrid Spatial Model for Capturing Spatially Varying Relationships Between Variables in the Data
Description:

It is a hybrid spatial model that combines the strength of two widely used regression models, MARS (Multivariate Adaptive Regression Splines) and GWR (Geographically Weighted Regression) to provide an effective approach for predicting a response variable at unknown locations. The MARS model is used in the first step of the development of a hybrid model to identify the most important predictor variables that assist in predicting the response variable. For method details see, Friedman, J.H. (1991). <DOI:10.1214/aos/1176347963>.The GWR model is then used to predict the response variable at testing locations based on these selected variables that account for spatial variations in the relationships between the variables. This hybrid model can improve the accuracy of the predictions compared to using an individual model alone.This developed hybrid spatial model can be useful particularly in cases where the relationship between the response variable and predictor variables is complex and non-linear, and varies across locations.

r-mwshiny 2.1.0
Propagated dependencies: r-shiny@1.11.1 r-htmltools@0.5.8.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mwshiny
Licenses: Expat
Synopsis: 'Shiny' for Multiple Windows
Description:

This package provides a simple function, mwsApp(), that runs a shiny app spanning multiple, connected windows. This uses all standard shiny conventions, and depends only on the shiny package.

r-montecarlosem 0.0.8
Propagated dependencies: r-matrix@1.7-4 r-lavaan@0.6-20
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MonteCarloSEM
Licenses: GPL 3
Synopsis: Monte Carlo Data Simulation Package
Description:

Monte Carlo simulation allows testing different conditions given to the correct structural equation models. This package runs Monte Carlo simulations under different conditions (such as sample size or normality of data). Within the package data sets can be simulated and run based on the given model. First, continuous and normal data sets are generated based on the given model. Later Fleishman's power method (1978) <DOI:10.1007/BF02293811> is used to add non-normality if exists. When data generation is completed (or when generated data sets are given) model test can also be run. Please cite as "Orçan, F. (2021). MonteCarloSEM: An R Package to Simulate Data for SEM. International Journal of Assessment Tools in Education, 8 (3), 704-713.".

r-misscompare 1.0.3
Propagated dependencies: r-vim@6.2.6 r-tidyr@1.3.1 r-rlang@1.1.6 r-plyr@1.8.9 r-pcamethods@2.2.0 r-missmda@1.20 r-missforest@1.6.1 r-mice@3.18.0 r-mi@1.2 r-matrix@1.7-4 r-mass@7.3-65 r-magrittr@2.0.4 r-ltm@1.2-0 r-hmisc@5.2-4 r-ggplot2@4.0.1 r-ggdendro@0.2.0 r-dplyr@1.1.4 r-data-table@1.17.8 r-amelia@1.8.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=missCompare
Licenses: Expat
Synopsis: Intuitive Missing Data Imputation Framework
Description:

Offers a convenient pipeline to test and compare various missing data imputation algorithms on simulated and real data. These include simpler methods, such as mean and median imputation and random replacement, but also include more sophisticated algorithms already implemented in popular R packages, such as mi', described by Su et al. (2011) <doi:10.18637/jss.v045.i02>; mice', described by van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>; missForest', described by Stekhoven and Buhlmann (2012) <doi:10.1093/bioinformatics/btr597>; missMDA', described by Josse and Husson (2016) <doi:10.18637/jss.v070.i01>; and pcaMethods', described by Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>. The central assumption behind missCompare is that structurally different datasets (e.g. larger datasets with a large number of correlated variables vs. smaller datasets with non correlated variables) will benefit differently from different missing data imputation algorithms. missCompare takes measurements of your dataset and sets up a sandbox to try a curated list of standard and sophisticated missing data imputation algorithms and compares them assuming custom missingness patterns. missCompare will also impute your real-life dataset for you after the selection of the best performing algorithm in the simulations. The package also provides various post-imputation diagnostics and visualizations to help you assess imputation performance.

r-mazing 1.0.5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mazing
Licenses: Expat
Synopsis: Utilities for Making and Plotting Mazes
Description:

Functionality for generating and plotting random mazes. The mazes are based on matrices, so can only consist of vertical and horizontal lines along a regular grid. But there is no need to use every possible space, so they can take on many different shapes.

r-mxkssd 1.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mxkssd
Licenses: GPL 2+
Synopsis: Efficient Mixed-Level k-Circulant Supersaturated Designs
Description:

Generates efficient balanced mixed-level k-circulant supersaturated designs by interchanging the elements of the generator vector. Attempts to generate a supersaturated design that has EfNOD efficiency more than user specified efficiency level (mef). Displays the progress of generation of an efficient mixed-level k-circulant design through a progress bar. The progress of 100 per cent means that one full round of interchange is completed. More than one full round (typically 4-5 rounds) of interchange may be required for larger designs. For more details, please see Mandal, B.N., Gupta V. K. and Parsad, R. (2011). Construction of Efficient Mixed-Level k-Circulant Supersaturated Designs, Journal of Statistical Theory and Practice, 5:4, 627-648, <doi:10.1080/15598608.2011.10483735>.

r-micromapst 3.1.1
Propagated dependencies: r-writexl@1.5.4 r-stringr@1.6.0 r-spdep@1.4-1 r-sf@1.0-23 r-rmapshaper@0.5.0 r-readxl@1.4.5 r-rcolorbrewer@1.1-3 r-labeling@0.4.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=micromapST
Licenses: GPL 2+
Synopsis: Linked Micromap Plots for U. S. and Other Geographic Areas
Description:

This package provides the users with the ability to quickly create linked micromap plots for a collection of geographic areas. Linked micromap plots are visualizations of geo-referenced data that link statistical graphics to an organized series of small maps or graphic images. The Help description contains examples of how to use the micromapST function. Contained in this package are border group datasets to support creating linked micromap plots for the 50 U.S. states and District of Columbia (51 areas), the U. S. 20 Seer Registries, the 105 counties in the state of Kansas, the 62 counties of New York, the 24 counties of Maryland, the 29 counties of Utah, the 32 administrative areas in China, the 218 administrative areas in the UK and Ireland (for testing only), the 25 districts in the city of Seoul South Korea, and the 52 counties on the Africa continent. A border group dataset contains the boundaries related to the data level areas, a second layer boundaries, a top or third layer boundary, a parameter list of run options, and a cross indexing table between area names, abbreviations, numeric identification and alias matching strings for the specific geographic area. By specifying a border group, the package create linked micromap plots for any geographic region. The user can create and provide their own border group dataset for any area beyond the areas contained within the package with the BuildBorderGroup function. In April of 2022, it was announced that maptools', rgdal', and rgeos R packages would be retired in middle to end of 2023 and removed from the CRAN libraries. The BuildBorderGroup function was dependent on these packages. micromapST functions were not impacted by the retired R packages. Upgrading of BuildBorderGroup function was completed and released with version 3.0.0 on August 10, 2023 using the sf R package. References: Carr and Pickle, Chapman and Hall/CRC, Visualizing Data Patterns with Micromaps, CRC Press, 2010. Pickle, Pearson, and Carr (2015), micromapST: Exploring and Communicating Geospatial Patterns in US State Data., Journal of Statistical Software, 63(3), 1-25., <https://www.jstatsoft.org/v63/i03/>. Copyrighted 2013, 2014, 2015, 2016, 2022, 2023, 2024, and 2025 by Carr, Pearson and Pickle.

r-mlcopula 1.1.0
Propagated dependencies: r-tsp@1.2.6 r-pracma@2.4.6 r-kde1d@1.1.1 r-igraph@2.2.1 r-gridcopula@1.1.0 r-copula@1.1-6
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MLCOPULA
Licenses: GPL 3
Synopsis: Classification Models with Copula Functions
Description:

This package provides several classifiers based on probabilistic models. These classifiers allow to model the dependence structure of continuous features through bivariate copula functions and graphical models, see Salinas-Gutiérrez et al. (2014) <doi:10.1007/s00180-013-0457-y>.

r-monoreg 2.1
Dependencies: gsl@2.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=monoreg
Licenses: GPL 2+
Synopsis: Bayesian Monotonic Regression Using a Marked Point Process Construction
Description:

An extended version of the nonparametric Bayesian monotonic regression procedure described in Saarela & Arjas (2011) <DOI:10.1111/j.1467-9469.2010.00716.x>, allowing for multiple additive monotonic components in the linear predictor, and time-to-event outcomes through case-base sampling. The extension and its applications, including estimation of absolute risks, are described in Saarela & Arjas (2015) <DOI:10.1111/sjos.12125>. The package also implements the nonparametric ordinal regression model described in Saarela, Rohrbeck & Arjas <DOI:10.1214/22-BA1310>.

r-mlrv 0.1.2
Propagated dependencies: r-xtable@1.8-4 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-numderiv@2016.8-1.1 r-mathjaxr@1.8-0 r-magrittr@2.0.4 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mlrv
Licenses: Expat
Synopsis: Long-Run Variance Estimation in Time Series Regression
Description:

Plug-in and difference-based long-run covariance matrix estimation for time series regression. Two applications of hypothesis testing are also provided. The first one is for testing for structural stability in coefficient functions. The second one is aimed at detecting long memory in time series regression. Lujia Bai and Weichi Wu (2024)<doi:10.3150/23-BEJ1680> Zhou Zhou and Wei Biao Wu(2010)<doi:10.1111/j.1467-9868.2010.00743.x> Jianqing Fan and Wenyang Zhang<doi:10.1214/aos/1017939139> Lujia Bai and Weichi Wu(2024)<doi:10.1093/biomet/asae013> Dimitris N. Politis, Joseph P. Romano, Michael Wolf(1999)<doi:10.1007/978-1-4612-1554-7> Weichi Wu and Zhou Zhou(2018)<doi:10.1214/17-AOS1582>.

r-marcox 1.0.0
Propagated dependencies: r-survival@3.8-3 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-matrix@1.7-4 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=marcox
Licenses: GPL 3
Synopsis: Marginal Hazard Ratio Estimation in Clustered Failure Time Data
Description:

Estimation of marginal hazard ratios in clustered failure time data. It implements the weighted generalized estimating equation approach based on a semiparametric marginal proportional hazards model (See Niu, Y. Peng, Y.(2015). "A new estimating equation approach for marginal hazard ratio estimation"), accounting for within-cluster correlations. 5 different correlation structures are supported. The package is designed for researchers in biostatistics and epidemiology who require accurate and efficient estimation methods for survival analysis in clustered data settings.

r-multiatsm 1.5.1
Propagated dependencies: r-pracma@2.4.6 r-magic@1.6-1 r-hablar@0.3.2 r-ggplot2@4.0.1 r-cowplot@1.2.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/rubensmoura87/MultiATSM
Licenses: GPL 2 GPL 3
Synopsis: Multicountry Term Structure of Interest Rates Models
Description:

Package for estimating, analyzing, and forecasting multi-country macro-finance affine term structure models (ATSMs). All setups build on the single-country unspanned macroeconomic risk framework from Joslin, Priebsch, and Singleton (2014, JF) <doi:10.1111/jofi.12131>. Multicountry extensions by Jotikasthira, Le, and Lundblad (2015, JFE) <doi:10.1016/j.jfineco.2014.09.004>, Candelon and Moura (2023, EM) <doi:10.1016/j.econmod.2023.106453>, and Candelon and Moura (2024, JFEC) <doi:10.1093/jjfinec/nbae008> are also available. The package also provides tools for bias correction as in Bauer Rudebusch and Wu (2012, JBES) <doi:10.1080/07350015.2012.693855>, bootstrap analysis, and several graphical/numerical outputs.

r-mscstexta4r 0.1.2
Propagated dependencies: r-stringi@1.8.7 r-pander@0.6.6 r-jsonlite@2.0.0 r-httr@1.4.7 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/philferriere/mscstexta4r
Licenses: Expat
Synopsis: R Client for the Microsoft Cognitive Services Text Analytics REST API
Description:

R Client for the Microsoft Cognitive Services Text Analytics REST API, including Sentiment Analysis, Topic Detection, Language Detection, and Key Phrase Extraction. An account MUST be registered at the Microsoft Cognitive Services website <https://www.microsoft.com/cognitive-services/> in order to obtain a (free) API key. Without an API key, this package will not work properly.

r-murphydiagram 0.12.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://sites.google.com/site/fk83research/code
Licenses: GPL 3
Synopsis: Murphy Diagrams for Forecast Comparisons
Description:

Data and code for the paper by Ehm, Gneiting, Jordan and Krueger ('Of Quantiles and Expectiles: Consistent Scoring Functions, Choquet Representations, and Forecast Rankings', JRSS-B, 2016 <DOI:10.1111/rssb.12154>).

r-modelsse 0.1-3
Propagated dependencies: r-delaporte@8.4.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=modelSSE
Licenses: GPL 3
Synopsis: Modelling Infectious Disease Superspreading from Contact Tracing Data
Description:

Comprehensive analytical tools are provided to characterize infectious disease superspreading from contact tracing surveillance data. The underlying theoretical frameworks of this toolkit include branching process with transmission heterogeneity (Lloyd-Smith et al. (2005) <doi:10.1038/nature04153>), case cluster size distribution (Nishiura et al. (2012) <doi:10.1016/j.jtbi.2011.10.039>, Blumberg et al. (2014) <doi:10.1371/journal.ppat.1004452>, and Kucharski and Althaus (2015) <doi:10.2807/1560-7917.ES2015.20.25.21167>), and decomposition of reproduction number (Zhao et al. (2022) <doi:10.1371/journal.pcbi.1010281>).

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208