Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
To assist biological researchers in assembling taxonomically and marker focused molecular sequence data sets. MACER accepts a list of genera as a user input and uses NCBI-GenBank and BOLD as resources to download and assemble molecular sequence datasets. These datasets are then assembled by marker, aligned, trimmed, and cleaned. The use of this package allows the publication of specific parameters to ensure reproducibility. The MACER package has four core functions and an example run through using all of these functions can be found in the associated repository <https://github.com/rgyoung6/MACER_example>.
Run flexible mediation analyses using natural effect models as described in Lange, Vansteelandt and Bekaert (2012) <DOI:10.1093/aje/kwr525>, Vansteelandt, Bekaert and Lange (2012) <DOI:10.1515/2161-962X.1014> and Loeys, Moerkerke, De Smet, Buysse, Steen and Vansteelandt (2013) <DOI:10.1080/00273171.2013.832132>.
Multiplicative AR(1) with Seasonal is a stochastic process model built on top of AR(1). The package provides the following procedures for MAR(1)S processes: fit, compose, decompose, advanced simulate and predict.
This package provides functions to facilitate model-based clustering of nodes in a network in a mixture of experts setting, which incorporates covariate information on the nodes in the modelling process. Isobel Claire Gormley and Thomas Brendan Murphy (2010) <doi:10.1016/j.stamet.2010.01.002>.
Most of this package consists of data sets from the textbook Introduction to Linear Regression Analysis (3rd ed), by Montgomery, Peck and Vining. Some additional data sets and functions are also included.
This package provides flexible dictionary-based cleaning that allows users to specify implicit and explicit missing data, regular expressions for both data and columns, and global matches, while respecting ordering of factors. This package is part of the RECON (<https://www.repidemicsconsortium.org/>) toolkit for outbreak analysis.
Multivariate distribution derived from a Bernoulli mixed model under a marginal approach, incorporating a non-normal random intercept whose distribution is assumed to follow a generalized log-gamma (GLG) specification under a particular parameter setting. Estimation is performed by maximizing the log-likelihood using numerical optimization techniques (Lizandra C. Fabio, Vanessa Barros, Cristian Lobos, Jalmar M. F. Carrasco, Marginal multivariate approach: A novel strategy for handling correlated binary outcomes, 2025, under submission).
This package provides access to teaching materials for various statistics courses, including R and Python programs, Shiny apps, data, and PDF/HTML documents. These materials are stored on the Internet as a ZIP file (e.g., in a GitHub repository) and can be downloaded and displayed or run locally. The content of the ZIP file is temporarily or permanently stored. By default, the package uses the GitHub repository sigbertklinke/mmstat4.data. Additionally, the package includes association_measures.R from the archived package ryouready by Mark Heckman and some auxiliary functions.
An S4 implementation of the unbiased extension of the model- assisted synthetic-regression estimator proposed by Mandallaz (2013) <DOI:10.1139/cjfr-2012-0381>, Mandallaz et al. (2013) <DOI:10.1139/cjfr-2013-0181> and Mandallaz (2014) <DOI:10.1139/cjfr-2013-0449>. It yields smaller variances than the standard bias correction, the generalised regression estimator.
This package provides a set of functions which use the Expectation Maximisation (EM) algorithm (Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x> Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, 39(1), 1--22) to take a finite mixture model approach to clustering. The package is designed to cluster multivariate data that have categorical and continuous variables and that possibly contain missing values. The method is described in Hunt, L. and Jorgensen, M. (1999) <doi:10.1111/1467-842X.00071> Australian & New Zealand Journal of Statistics 41(2), 153--171 and Hunt, L. and Jorgensen, M. (2003) <doi:10.1016/S0167-9473(02)00190-1> Mixture model clustering for mixed data with missing information, Computational Statistics & Data Analysis, 41(3-4), 429--440.
The tools for MicroRNA Set Enrichment Analysis can identify risk pathways(or prior gene sets) regulated by microRNA set in the context of microRNA expression data. (1) This package constructs a correlation profile of microRNA and pathways by the hypergeometric statistic test. The gene sets of pathways derived from the three public databases (Kyoto Encyclopedia of Genes and Genomes ('KEGG'); Reactome'; Biocarta') and the target gene sets of microRNA are provided by four databases('TarBaseV6.0'; mir2Disease'; miRecords'; miRTarBase';). (2) This package can quantify the change of correlation between microRNA for each pathway(or prior gene set) based on a microRNA expression data with cases and controls. (3) This package uses the weighted Kolmogorov-Smirnov statistic to calculate an enrichment score (ES) of a microRNA set that co-regulate to a pathway , which reflects the degree to which a given pathway is associated with the specific phenotype. (4) This package can provide the visualization of the results.
Deploy file changes across multiple GitHub repositories using the GitHub Web API <https://docs.github.com/en/rest>. Allows synchronizing common files, Continuous Integration ('CI') workflows, or configurations across many repositories with a single command.
This package implements methodologies for modelling interval data by Normal and Skew-Normal distributions, considering appropriate parameterizations of the variance-covariance matrix that takes into account the intrinsic nature of interval data, and lead to four different possible configuration structures. The Skew-Normal parameters can be estimated by maximum likelihood, while Normal parameters may be estimated by maximum likelihood or robust trimmed maximum likelihood methods.
Conducts and simulates the MABOUST design, including making interim decisions to stop a treatment for inferiority or stop the trial early for superiority or equivalency.
Computation and visualization of matrix correlation coefficients. The main method is the Similarity of Matrices Index, while various related measures like r1, r2, r3, r4, Yanai's GCD, RV, RV2, adjusted RV, Rozeboom's linear correlation and Coxhead's coefficient are included for comparison and flexibility.
If results from a meta-GWAS are used for validation in one of the cohorts that was included in the meta-analysis, this will yield biased (i.e. too optimistic) results. The validation cohort needs to be independent from the meta-Genome-Wide-Association-Study (meta-GWAS) results. MetaSubtract will subtract the results of the respective cohort from the meta-GWAS results analytically without having to redo the meta-GWAS analysis using the leave-one-out methodology. It can handle different meta-analyses methods and takes into account if single or double genomic control correction was applied to the original meta-analysis. It can also handle different meta-analysis methods. It can be used for whole GWAS, but also for a limited set of genetic markers. See for application: Nolte I.M. et al. (2017); <doi: 10.1038/ejhg.2017.50>.
This package provides functions of marginal mean and quantile regression models are used to analyze environmental exposure and biomonitoring data with repeated measurements and non-detects (i.e., values below the limit of detection (LOD)), as well as longitudinal exposure data that include non-detects and time-dependent covariates. For more details see Chen IC, Bertke SJ, Curwin BD (2021) <doi:10.1038/s41370-021-00345-1>, Chen IC, Bertke SJ, Estill CF (2024) <doi:10.1038/s41370-024-00640-7>, Chen IC, Bertke SJ, Dahm MM (2024) <doi:10.1093/annweh/wxae068>, and Chen IC (2025) <doi:10.1038/s41370-025-00752-8>.
Characterization of a mid-summer drought (MSD) with precipitation based statistics. The MSD is a phenomenon of decreased rainfall during a typical rainy season. It is a feature of rainfall in much of Central America and is also found in other locations, typically those with a Mediterranean climate. Details on the metrics are in Maurer et al. (2022) <doi:10.5194/hess-26-1425-2022>.
Approximate node interaction parameters of Markov Random Fields graphical networks. Models can incorporate additional covariates, allowing users to estimate how interactions between nodes in the graph are predicted to change across covariate gradients. The general methods implemented in this package are described in Clark et al. (2018) <doi:10.1002/ecy.2221>.
First- and higher-order likelihood inference in meta-analysis and meta-regression models.
This package provides tools for creating agents with persistent state using R6 classes <https://cran.r-project.org/package=R6> and the ellmer package <https://cran.r-project.org/package=ellmer>. Tracks prompts, messages, and agent metadata for reproducible, multi-turn large language model sessions.
The IRLS (Iteratively Reweighted Least Squares) and GMM (Generalized Method of Moments) methods are applied to estimate mixed correlation coefficient matrix (Pearson, Polyseries, Polychoric), which can be estimated in pairs or simultaneously. For more information see Peng Zhang and Ben Liu (2024) <doi:10.1080/10618600.2023.2257251>; Ben Liu and Peng Zhang (2024) <doi:10.48550/arXiv.2404.06781>.
The latest guidelines proposed by International Expert Consensus are used for the clinical diagnosis of Metabolic Associated Fatty Liver Disease (MAFLD). The new definition takes hepatic steatosis (determined by elastography or histology or biomarker-based fatty liver index) as a major criterion. In addition, race, gender, body mass index (BMI), waist circumference (WC), fasting plasma glucose (FPG), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides (TG), high-density lipoprotein cholesterol (HDLC), homeostatic model assessment of insulin resistance (HOMAIR), high sensitive c-reactive protein (HsCRP) for the diagnosis of MAFLD. Each parameter has to be interpreted based on the proposed cut-offs, making the diagnosis slightly complex and error-prone. This package is developed by incorporating the latest international expert consensus guidelines, and it will aid in the easy and quick diagnosis of MAFLD based on FibroScan in busy healthcare settings and also for research purposes. The new definition for MAFLD as per the International Consensus Statement is described by Eslam M et al (2020). <doi:10.1016/j.jhep.2020.03.039>.
The Society of Actuaries (SOA) provides an extensive online database called Mortality and Other Rate Tables ('MORT') at <https://mort.soa.org/>. This database contains mortality, lapse, and valuation tables that cover a variety of product types and nations. Users of the database can download any tables in Excel', CSV', or XML formats. This package provides convenience functions that read XML formats from the database and return R objects.