Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Interface to Apache Commons Email to send emails from R.
Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index , transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.
This package implements likelihood inference based on higher order approximations for linear nonnormal regression models.
Allows the user to create graphs with multiple layers. The user can also modify the layers, the nodes, and the edges. The graph can also be visualized. Zaynab Hammoud and Frank Kramer (2018) <doi:10.3390/genes9110519>. More about multilayered graphs and their usage can be found in our review paper: Zaynab Hammoud and Frank Kramer (2020) <doi:10.1186/s41044-020-00046-0>.
When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0 due to missing information between node pairs), it is possible to account for the underlying process that generates those NAs. missSBM', presented in Barbillon, Chiquet and Tabouy (2022) <doi:10.18637/jss.v101.i12>, adjusts the popular stochastic block model from network data sampled under various missing data conditions, as described in Tabouy, Barbillon and Chiquet (2019) <doi:10.1080/01621459.2018.1562934>.
This package implements methodologies for modelling interval data by Normal and Skew-Normal distributions, considering appropriate parameterizations of the variance-covariance matrix that takes into account the intrinsic nature of interval data, and lead to four different possible configuration structures. The Skew-Normal parameters can be estimated by maximum likelihood, while Normal parameters may be estimated by maximum likelihood or robust trimmed maximum likelihood methods.
Density evaluation and random number generation for the Matrix-Normal Inverse-Wishart (MNIW) distribution, as well as the the Matrix-Normal, Matrix-T, Wishart, and Inverse-Wishart distributions. Core calculations are implemented in a portable (header-only) C++ library, with matrix manipulations using the Eigen library for linear algebra. Also provided is a Gibbs sampler for Bayesian inference on a random-effects model with multivariate normal observations.
This package provides functions for the robust estimation of parametric families of copulas using minimization of the Maximum Mean Discrepancy, following the article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2022) <doi:10.1080/01621459.2021.2024836>.
This package provides a downstream bioinformatics tool to construct and assist curation of microhaplotypes from short read sequences.
Multiplicative AR(1) with Seasonal is a stochastic process model built on top of AR(1). The package provides the following procedures for MAR(1)S processes: fit, compose, decompose, advanced simulate and predict.
This package provides a comprehensive framework for calculating unbiased distances in datasets containing mixed-type variables (numerical and categorical). The package implements a general formulation that ensures multivariate additivity and commensurability, meaning that variables contribute equally to the overall distance regardless of their type, scale, or distribution. Supports multiple distance measures including Gower's distance, Euclidean distance, Manhattan distance, and various categorical variable distances such as simple matching, Eskin, occurrence frequency, and association-based distances. Provides tools for variable scaling (standard deviation, range, robust range, and principal component scaling), and handles both independent and association-based category dissimilarities. Implements methods to correct for biases that typically arise from different variable types, distributions, and number of categories. Particularly useful for cluster analysis, data visualization, and other distance-based methods when working with mixed data. Methods based on van de Velden et al. (2024) <doi:10.48550/arXiv.2411.00429> "Unbiased mixed variables distance".
Model selection and averaging for regression and mixtures, inclusing Bayesian model selection and information criteria (BIC, EBIC, AIC, GIC).
Estimate diagnostic classification models (also called cognitive diagnostic models) with Stan'. Diagnostic classification models are confirmatory latent class models, as described by Rupp et al. (2010, ISBN: 978-1-60623-527-0). Automatically generate Stan code for the general loglinear cognitive diagnostic diagnostic model proposed by Henson et al. (2009) <doi:10.1007/s11336-008-9089-5> and other subtypes that introduce additional model constraints. Using the generated Stan code, estimate the model evaluate the model's performance using model fit indices, information criteria, and reliability metrics.
Download data from the Ada and Archibald MacLeish Field Station in Whately, MA. The Ada and Archibald MacLeish Field Station is a 260-acre patchwork of forest and farmland located in West Whately, MA that provides opportunities for faculty and students to pursue environmental research, outdoor education, and low-impact recreation (see <https://www.smith.edu/discover-smith/smith-action/sustainable-smith/macleish-field-station> for more information). This package contains weather data over several years, and spatial data on various man-made and natural structures.
For the purposes of teaching, it is often desirable to show examples of working with messy data and how to clean it. This R package creates messy data from clean, tidy data frames so that students have a clean example to work towards.
The Moving Epidemic Method, created by T Vega and JE Lozano (2012, 2015) <doi:10.1111/j.1750-2659.2012.00422.x>, <doi:10.1111/irv.12330>, allows the weekly assessment of the epidemic and intensity status to help in routine respiratory infections surveillance in health systems. Allows the comparison of different epidemic indicators, timing and shape with past epidemics and across different regions or countries with different surveillance systems. Also, it gives a measure of the performance of the method in terms of sensitivity and specificity of the alert week. memapp is a web application created in the Shiny framework for the mem R package.
Define, manipulate and plot meshes on simplices, spheres, balls, rectangles and tubes. Directional and other multivariate histograms are provided.
High-throughput, flexible and reproducible extraction of data from figures in primary research papers. metaDigitise() can extract data and / or automatically calculate summary statistics for users from box plots, bar plots (e.g., mean and errors), scatter plots and histograms.
Find common entities detected in both positive and negative ionization mode, delete this entity in the less sensible mode and combine both matrices.
This package provides fundamental functions for descriptive statistics, including MODE(), estimate_mode(), center_stats(), position_stats(), pct(), spread_stats(), kurt(), skew(), and shape_stats(), which assist in summarizing the center, spread, and shape of numeric data. For more details, see McCurdy (2025), "Introduction to Data Science with R" <https://jonmccurdy.github.io/Introduction-to-Data-Science/>.
Implementation of hypothesis testing procedures described in Hansen (1992) <doi:10.1002/jae.3950070506>, Carrasco, Hu, & Ploberger (2014) <doi:10.3982/ECTA8609>, Dufour & Luger (2017) <doi:10.1080/07474938.2017.1307548>, and Rodriguez Rondon & Dufour (2024) <https://grodriguezrondon.com/files/RodriguezRondon_Dufour_2025_MonteCarlo_LikelihoodRatioTest_MarkovSwitchingModels_20251014.pdf> that can be used to identify the number of regimes in Markov switching models.
Describes spatial patterns of categorical raster data for any defined regular and irregular areas. Patterns are described quantitatively using built-in signatures based on co-occurrence matrices but also allows for any user-defined functions. It enables spatial analysis such as search, change detection, and clustering to be performed on spatial patterns (Nowosad (2021) <doi:10.1007/s10980-020-01135-0>).
This package performs the multiple testing procedures of Cox (2011) <doi:10.5170/CERN-2011-006> and Wong and Cox (2007) <doi:10.1080/02664760701240014>.
This package provides a collection of functions for conducting meta-analysis using a structural equation modeling (SEM) approach via the OpenMx and lavaan packages. It also implements various procedures to perform meta-analytic structural equation modeling on the correlation and covariance matrices, see Cheung (2015) <doi:10.3389/fpsyg.2014.01521>.