Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Facilitates network clustering and evaluation of cluster configurations.
Collection of example animal sounds for bioacoustic analysis.
Routines for fitting and simulating data under autoregressive fractionally integrated moving average (ARFIMA) models, without the constraint of covariance stationarity. Two fitting methods are implemented, a pseudo-maximum likelihood method and a minimum distance estimator. Mayoral, L. (2007) <doi:10.1111/j.1368-423X.2007.00202.x>. Beran, J. (1995) <doi:10.1111/j.2517-6161.1995.tb02054.x>.
We solve non linear least squares problems with optional equality and/or inequality constraints. Non linear iterations are globalized with back-tracking method. Linear problems are solved by dense QR decomposition from LAPACK which can limit the size of treated problems. On the other side, we avoid condition number degradation which happens in classical quadratic programming approach. Inequality constraints treatment on each non linear iteration is based on NNLS method (by Lawson and Hanson). We provide an original function lsi_ln for solving linear least squares problem with inequality constraints in least norm sens. Thus if Jacobian of the problem is rank deficient a solution still can be provided. However, truncation errors are probable in this case. Equality constraints are treated by using a basis of Null-space. User defined function calculating residuals must return a list having residual vector (not their squared sum) and Jacobian. If Jacobian is not in the returned list, package numDeriv is used to calculated finite difference version of Jacobian. The NLSIC method was fist published in Sokol et al. (2012) <doi:10.1093/bioinformatics/btr716>.
This package provides a near drop-in replacement for base::Sys.sleep() that allows more types of input to produce delays in the execution of code and can silence/prevent typical sources of error.
Semissupervised model for geographical document classification (Watanabe 2018) <doi:10.1080/21670811.2017.1293487>. This package currently contains seed dictionaries in English, German, French, Spanish, Italian, Russian, Hebrew, Arabic, Turkish, Japanese and Chinese (Simplified and Traditional).
This package provides tools for visual inference. Generate null data sets and null plots using permutation and simulation. Calculate distance metrics for a lineup, and examine the distributions of metrics.
Neighbour-balanced designs ensure that no treatment is disadvantaged unfairly by its surroundings. The treatment allocation in these designs is such that every treatment appears equally often as a neighbour with every other treatment. Neighbour Balanced Designs are employed when there is a possibility of neighbour effects from treatments used in adjacent experimental units. In the literature, a vast number of such designs have been developed. This package generates some efficient neighbour balanced block designs which are balanced and partially variance balanced for estimating the contrast pertaining to direct and neighbour effects, as well as provides a function for analysing the data obtained from such trials (Azais, J.M., Bailey, R.A. and Monod, H. (1993). "A catalogue of efficient neighbour designs with border plots". Biometrics, 49, 1252-1261 ; Tomar, J. S., Jaggi, Seema and Varghese, Cini (2005)<DOI: 10.1080/0266476042000305177>. "On totally balanced block designs for competition effects"). This package contains functions named nbbd1(),nbbd2(),nbbd3(),pnbbd1() and pnbbd2() which generates neighbour balanced block designs within a specified range of number of treatment (v). It contains another function named anlys()for performing the analysis of data generated from such trials.
Normative data are often used to estimate the relative position of a raw test score in the population. This package allows for deriving regression-based normative data. It includes functions that enable the fitting of regression models for the mean and residual (or variance) structures, test the model assumptions, derive the normative data in the form of normative tables or automatic scoring sheets, and estimate confidence intervals for the norms. This package accompanies the book Van der Elst, W. (2024). Regression-based normative data for psychological assessment. A hands-on approach using R. Springer Nature.
Implementation of discriminant analysis with network structures in predictors accommodated to do classification and prediction.
User-friendly functions for extracting a data table (row for each match, column for each group) from non-tabular text data using regular expressions, and for melting columns that match a regular expression. Patterns are defined using a readable syntax that makes it easy to build complex patterns in terms of simpler, re-usable sub-patterns. Named R arguments are translated to column names in the output; capture groups without names are used internally in order to provide a standard interface to three regular expression C libraries ('PCRE', RE2', ICU'). Output can also include numeric columns via user-specified type conversion functions.
Facilitates nonresponse bias analysis (NRBA) for survey data. Such data may arise from a complex sampling design with features such as stratification, clustering, or unequal probabilities of selection. Multiple types of analyses may be conducted: comparisons of response rates across subgroups; comparisons of estimates before and after weighting adjustments; comparisons of sample-based estimates to external population totals; tests of systematic differences in covariate means between respondents and full samples; tests of independence between response status and covariates; and modeling of outcomes and response status as a function of covariates. Extensive documentation and references are provided for each type of analysis. Krenzke, Van de Kerckhove, and Mohadjer (2005) <http://www.asasrms.org/Proceedings/y2005/files/JSM2005-000572.pdf> and Lohr and Riddles (2016) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2016002/article/14677-eng.pdf?st=q7PyNsGR> provide an overview of the methods implemented in this package.
Statistical methods for whole-trial and time-domain analysis of single cell neural response to multiple stimuli presented simultaneously. The package is based on the paper by C Glynn, ST Tokdar, A Zaman, VC Caruso, JT Mohl, SM Willett, and JM Groh (2021) "Analyzing second order stochasticity of neural spiking under stimuli-bundle exposure", is in press for publication by the Annals of Applied Statistics. A preprint may be found at <arXiv:1911.04387>.
K-nearest neighbor search for projected and non-projected sf spatial layers. Nearest neighbor search uses (1) C code from GeographicLib for lon-lat point layers, (2) function knn() from package nabor for projected point layers, or (3) function st_distance() from package sf for line or polygon layers. The package also includes several other utility functions for spatial analysis.
This package provides functions and examples for histogram, kernel (classical, variable bandwidth and transformations based), discrete and semiparametric hazard rate estimators.
Sparse VAR estimation based on LASSO.
The aim of nosoi (pronounced no.si) is to provide a flexible agent-based stochastic transmission chain/epidemic simulator (Lequime et al. Methods in Ecology and Evolution 11:1002-1007). It is named after the daimones of plague, sickness and disease that escaped Pandora's jar in the Greek mythology. nosoi is able to take into account the influence of multiple variable on the transmission process (e.g. dual-host systems (such as arboviruses), within-host viral dynamics, transportation, population structure), alone or taken together, to create complex but relatively intuitive epidemiological simulations.
Indices, heuristics, simulations and strategies to help determine the number of factors/components to retain in exploratory factor analysis and principal component analysis.
Extends package nat (NeuroAnatomy Toolbox) by providing a collection of NBLAST-related functions for neuronal morphology comparison (Costa et al. (2016) <doi: 10.1016/j.neuron.2016.06.012>).
In the working paper titled "Why You Should Never Use the Hodrick-Prescott Filter", James D. Hamilton proposes a new alternative to economic time series filtering. The neverhpfilter package provides functions and data for reproducing his work. Hamilton (2017) <doi:10.3386/w23429>.
This is an R implementation of the netinf algorithm (Gomez Rodriguez, Leskovec, and Krause, 2010)<doi:10.1145/1835804.1835933>. Given a set of events that spread between a set of nodes the algorithm infers the most likely stable diffusion network that is underlying the diffusion process.
Systematically creates and modifies NONMEM(R) control streams. Harvests NONMEM output, builds run logs, creates derivative data, generates diagnostics. NONMEM (ICON Development Solutions <https://www.iconplc.com/>) is software for nonlinear mixed effects modeling. See package?nonmemica'.
Clustering unilayer and multilayer network data by means of finite mixtures is the main utility of netClust'.
User-friendly, clear and simple statistics, primarily for publication in psychological science. The main functions are wrappers for other packages, but there are various additions as well. Every relevant step from data aggregation to reportable printed statistics is covered for basic experimental designs.