Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a graphical display of results from network meta-analysis (NMA). It is suitable for outcomes like odds ratio (OR), risk ratio (RR), risk difference (RD) and standardized mean difference (SMD). It also has an option to visually display and compare the surface under the cumulative ranking (SUCRA) of different treatments.
Count the occurrence of sequences of values in a vector that meets certain conditions of length and magnitude. The method is based on the Run Length Encoding algorithm, available with base R, inspired by A. H. Robinson and C. Cherry (1967) <doi:10.1109/PROC.1967.5493>.
We developed an inference tool based on approximate Bayesian computation to decipher network data and assess the strength of the inferred links between network's actors. It is a new multi-level approximate Bayesian computation (ABC) approach. At the first level, the method captures the global properties of the network, such as a scale-free structure and clustering coefficients, whereas the second level is targeted to capture local properties, including the probability of each couple of genes being linked. Up to now, Approximate Bayesian Computation (ABC) algorithms have been scarcely used in that setting and, due to the computational overhead, their application was limited to a small number of genes. On the contrary, our algorithm was made to cope with that issue and has low computational cost. It can be used, for instance, for elucidating gene regulatory network, which is an important step towards understanding the normal cell physiology and complex pathological phenotype. Reverse-engineering consists in using gene expressions over time or over different experimental conditions to discover the structure of the gene network in a targeted cellular process. The fact that gene expression data are usually noisy, highly correlated, and have high dimensionality explains the need for specific statistical methods to reverse engineer the underlying network.
This package implements methods introduced in Chen, Christensen, and Kankanala (2024) <doi:10.1093/restud/rdae025> for estimating and constructing uniform confidence bands for nonparametric structural functions using instrumental variables, including data-driven choice of tuning parameters. All methods in this package apply to nonparametric regression as a special case.
Commodity pricing models are (systems of) stochastic differential equations that are utilized for the valuation and hedging of commodity contingent claims (i.e. derivative products on the commodity) and other commodity related investments. Commodity pricing models that capture market dynamics are of great importance to commodity market participants in order to exercise sound investment and risk-management strategies. Parameters of commodity pricing models are estimated through maximum likelihood estimation, using available term structure futures data of a commodity. NFCP (n-factor commodity pricing) provides a framework for the modeling, parameter estimation, probabilistic forecasting, option valuation and simulation of commodity prices through state space and Monte Carlo methods, risk-neutral valuation and Kalman filtering. NFCP allows the commodity pricing model to consist of n correlated factors, with both random walk and mean-reverting elements. The n-factor commodity pricing model framework was first presented in the work of Cortazar and Naranjo (2006) <doi:10.1002/fut.20198>. Examples presented in NFCP replicate the two-factor crude oil commodity pricing model presented in the prolific work of Schwartz and Smith (2000) <doi:10.1287/mnsc.46.7.893.12034> with the approximate term structure futures data applied within this study provided in the NFCP package.
This package provides tools to support research on vowel covariation. Methods are provided to support Principal Component Analysis workflows (as in Brand et al. (2021) <doi:10.1016/j.wocn.2021.101096> and Wilson Black et al. (2023) <doi:10.1515/lingvan-2022-0086>).
Base package for Neuroconductor', which includes many helper functions that interact with objects of class nifti', implemented by package oro.nifti', for reading/writing and also other manipulation functions.
Basic implementation of a Gibbs sampler for a Chinese Restaurant Process along with some visual aids to help understand how the sampling works. This is developed as part of a postgraduate school project for an Advanced Bayesian Nonparametric course. It is inspired by Tamara Broderick's presentation on Nonparametric Bayesian statistics given at the Simons institute.
Optimizing regular numeric problems in optically stimulated luminescence dating, such as: equivalent dose calculation, dose rate determination, growth curve fitting, decay curve decomposition, statistical age model optimization, and statistical plot visualization.
This package provides a flexible tool that can perform (i) traditional non-compartmental analysis (NCA) and (ii) Simulation-based posterior predictive checks for population pharmacokinetic (PK) and/or pharmacodynamic (PKPD) models using NCA metrics. The methods are described in Acharya et al. (2016) <doi:10.1016/j.cmpb.2016.01.013>.
This package contains the functions for testing the spatial patterns (of segregation, spatial symmetry, association, disease clustering, species correspondence, and reflexivity) based on nearest neighbor relations, especially using contingency tables such as nearest neighbor contingency tables (Ceyhan (2010) <doi:10.1007/s10651-008-0104-x> and Ceyhan (2017) <doi:10.1016/j.jkss.2016.10.002> and references therein), nearest neighbor symmetry contingency tables (Ceyhan (2014) <doi:10.1155/2014/698296>), species correspondence contingency tables and reflexivity contingency tables (Ceyhan (2018) <doi:10.2436/20.8080.02.72> for two (or higher) dimensional data. The package also contains functions for generating patterns of segregation, association, uniformity in a multi-class setting (Ceyhan (2014) <doi:10.1007/s00477-013-0824-9>), and various non-random labeling patterns for disease clustering in two dimensional cases (Ceyhan (2014) <doi:10.1002/sim.6053>), and for visualization of all these patterns for the two dimensional data. The tests are usually (asymptotic) normal z-tests or chi-square tests.
This package provides a comprehensive toolkit for calculating and visualizing Nitrogen Use Efficiency (NUE) indicators in agricultural research. The package implements 23 parameters categorized into fertilizer-based, plant-based, soil-based, isotope-based, ecology-based, and system-based indicators based on Congreves et al. (2021) <doi:10.3389/fpls.2021.637108>. Key features include vectorized calculations for paired-plot experimental designs, batch processing capabilities for handling large datasets, and built-in visualization tools using ggplot2'. Designed to streamline the workflow from raw agronomic data to publication-ready metrics and plots.
The nflverse is a set of packages dedicated to data of the National Football League. This package is designed to make it easy to install and load multiple nflverse packages in a single step. Learn more about the nflverse at <https://nflverse.nflverse.com/>.
This package provides functions for specifying and fitting nested dichotomy logistic regression models for a multi-category response and methods for summarising and plotting those models. Nested dichotomies are statistically independent, and hence provide an additive decomposition of tests for the overall polytomous response. When the dichotomies make sense substantively, this method can be a simpler alternative to the standard multinomial logistic model which compares response categories to a reference level. See: J. Fox (2016), "Applied Regression Analysis and Generalized Linear Models", 3rd Ed., ISBN 1452205663.
Exact automatic differentiation for R functions. Provides a composable derivative operator D that computes gradients, Hessians, Jacobians, and arbitrary-order derivative tensors at machine precision. D(D(f)) gives Hessians, D(D(D(f))) gives third-order tensors for skewness of maximum likelihood estimators, and so on to any order. Works through any R code including loops, branches, and control flow.
Package including an interactive Shiny application for testing normality visually.
NeuroAnatomy Toolbox (nat) enables analysis and visualisation of 3D biological image data, especially traced neurons. Reads and writes 3D images in NRRD and Amira AmiraMesh formats and reads surfaces in Amira hxsurf format. Traced neurons can be imported from and written to SWC and Amira LineSet and SkeletonGraph formats. These data can then be visualised in 3D via rgl', manipulated including applying calculated registrations, e.g. using the CMTK registration suite, and analysed. There is also a simple representation for neurons that have been subjected to 3D skeletonisation but not formally traced; this allows morphological comparison between neurons including searches and clustering (via the nat.nblast extension package).
Partial informational correlation (PIC) is used to identify the meaningful predictors to the response from a large set of potential predictors. Details of methodologies used in the package can be found in Sharma, A., Mehrotra, R. (2014). <doi:10.1002/2013WR013845>, Sharma, A., Mehrotra, R., Li, J., & Jha, S. (2016). <doi:10.1016/j.envsoft.2016.05.021>, and Mehrotra, R., & Sharma, A. (2006). <doi:10.1016/j.advwatres.2005.08.007>.
Indices, heuristics, simulations and strategies to help determine the number of factors/components to retain in exploratory factor analysis and principal component analysis.
This package provides a collection of NASCAR race, driver, owner and manufacturer data across the three major NASCAR divisions: NASCAR Cup Series, NASCAR Xfinity Series, and NASCAR Craftsman Truck Series. The curated data begins with the 1949 season and extends through the end of the 2024 season. Explore race, season, or career performance for drivers, teams, and manufacturers throughout NASCAR's history. Data was sourced with permission from DriverAverages.com.
The ntfy (pronounce: notify) service is a simple HTTP-based pub-sub notification service. It allows you to send notifications to your phone or desktop via scripts from any computer, entirely without signup, cost or setup. It's also open source if you want to run your own. Visit <https://ntfy.sh> for more details.
To estimate ecological stochasticity in community assembly. Understanding the community assembly mechanisms controlling biodiversity patterns is a central issue in ecology. Although it is generally accepted that both deterministic and stochastic processes play important roles in community assembly, quantifying their relative importance is challenging. The new index, normalized stochasticity ratio (NST), is to estimate ecological stochasticity, i.e. relative importance of stochastic processes, in community assembly. With functions in this package, NST can be calculated based on different similarity metrics and/or different null model algorithms, as well as some previous indexes, e.g. previous Stochasticity Ratio (ST), Standard Effect Size (SES), modified Raup-Crick metrics (RC). Functions for permutational test and bootstrapping analysis are also included. Previous ST is published by Zhou et al (2014) <doi:10.1073/pnas.1324044111>. NST is modified from ST by considering two alternative situations and normalizing the index to range from 0 to 1 (Ning et al 2019) <doi:10.1073/pnas.1904623116>. A modified version, MST, is a special case of NST, used in some recent or upcoming publications, e.g. Liang et al (2020) <doi:10.1016/j.soilbio.2020.108023>. SES is calculated as described in Kraft et al (2011) <doi:10.1126/science.1208584>. RC is calculated as reported by Chase et al (2011) <doi:10.1890/ES10-00117.1> and Stegen et al (2013) <doi:10.1038/ismej.2013.93>. Version 3 added NST based on phylogenetic beta diversity, used by Ning et al (2020) <doi:10.1038/s41467-020-18560-z>.
This package provides number-theoretic functions for factorization, prime numbers, twin primes, primitive roots, modular logarithm and inverses, extended GCD, Farey series and continued fractions. Includes Legendre and Jacobi symbols, some divisor functions, Euler's Phi function, etc.
This package implements a method that builds the coefficients of a polynomial model that performs almost equivalently as a given neural network (densely connected). This is achieved using Taylor expansion at the activation functions. The obtained polynomial coefficients can be used to explain features (and their interactions) importance in the neural network, therefore working as a tool for interpretability or eXplainable Artificial Intelligence (XAI). See Morala et al. 2021 <doi:10.1016/j.neunet.2021.04.036>, and 2023 <doi:10.1109/TNNLS.2023.3330328>.