Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Sample sizes are often small due to hard to reach target populations, rare target events, time constraints, limited budgets, or ethical considerations. Two statistical methods with promising performance in small samples are the nonparametric bootstrap test with pooled resampling method, which is the focus of Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, and informative hypothesis testing, which is implemented in the restriktor package. The npboottprmFBar package uses the nonparametric bootstrap test with pooled resampling method to implement informative hypothesis testing. The bootFbar() function can be used to analyze data with this method and the persimon() function can be used to conduct performance simulations on type-one error and statistical power.
Scrapes and cleans data from the NHL and ESPN APIs into data.frames and lists. Wraps 125+ endpoints documented in <https://github.com/RentoSaijo/nhlscraper/wiki> from high-level multi-season summaries and award winners to low-level decisecond replays and bookmakers odds, making them more accessible. Features cleaning and visualization tools, primarily for play-by-plays.
Datasets for nlmixr2 and rxode2'. nlmixr2 is used for fitting and comparing nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
Implementation of discriminant analysis with network structures in predictors accommodated to do classification and prediction.
Classification, regression, and clustering with k nearest neighbors algorithm. Implements several distance and similarity measures, covering continuous and logical features. Outputs ranked neighbors. Most features of this package are directly based on the PMML specification for KNN.
Interface to the Nomis database (<https://www.nomisweb.co.uk>), maintained by Durham University on behalf of the Office for National Statistics (ONS). Provides access to UK labour market statistics including census data, benefit claimant counts, and employment surveys. Supports automatic pagination, optional disk caching, spatial data via sf', and tidy data output. Independent implementation unaffiliated with ONS or Durham University.
Sends queries to a specified Neo4J graph database, capturing results in a dataframe where appropriate. Other useful functions for the importing and management of data on the Neo4J server and basic local server admin.
An interactive document on the topic of naive Bayes classification analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/NBShiny/>.
Derives the most frequent hierarchies along with their probability of occurrence. One can also define complex hierarchy criteria and calculate their probability. Methodology based on Papakonstantinou et al. (2021) <DOI:10.21203/rs.3.rs-858140/v1>.
This package implements statistical tools for analyzing, simulating, and computing properties of the New Topp-Leone Kumaraswamy Inverse Exponential (NTLKwIEx) distribution. See Atchadé M, Otodji T, and Djibril A (2024) <doi:10.1063/5.0179458> and Atchadé M, Otodji T, Djibril A, and N'bouké M (2023) <doi:10.1515/phys-2023-0151> for details.
Simulates events from one dimensional nonhomogeneous Poisson point processes (NHPPPs) as per Trikalinos and Sereda (2024, <doi:10.48550/arXiv.2402.00358> and 2024, <doi:10.1371/journal.pone.0311311>). Functions are based on three algorithms that provably sample from a target NHPPP: the time-transformation of a homogeneous Poisson process (of intensity one) via the inverse of the integrated intensity function (Cinlar E, "Theory of stochastic processes" (1975, ISBN:0486497996)); the generation of a Poisson number of order statistics from a fixed density function; and the thinning of a majorizing NHPPP via an acceptance-rejection scheme (Lewis PAW, Shedler, GS (1979) <doi:10.1002/nav.3800260304>).
Estimates micro effects on macro structures (MEMS) and average micro mediated effects (AMME). URL: <https://github.com/sduxbury/netmediate>. BugReports: <https://github.com/sduxbury/netmediate/issues>. Robins, Garry, Phillipa Pattison, and Jodie Woolcock (2005) <doi:10.1086/427322>. Snijders, Tom A. B., and Christian E. G. Steglich (2015) <doi:10.1177/0049124113494573>. Imai, Kosuke, Luke Keele, and Dustin Tingley (2010) <doi:10.1037/a0020761>. Duxbury, Scott (2023) <doi:10.1177/00811750231209040>. Duxbury, Scott (2024) <doi:10.1177/00811750231220950>.
Retrieve and plot word frequencies through time from the "Google Ngram Viewer" <https://books.google.com/ngrams>.
Naive discriminative learning implements learning and classification models based on the Rescorla-Wagner equations and their equilibrium equations.
Designed for association studies in nested association mapping (NAM) panels, experimental and random panels. The method is described by Xavier et al. (2015) <doi:10.1093/bioinformatics/btv448>. It includes tools for genome-wide associations of multiple populations, marker quality control, population genetics analysis, genome-wide prediction, solving mixed models and finding variance components through likelihood and Bayesian methods.
This package provides tools for working with the National Hydrography Dataset, with functions for querying, downloading, and networking both the NHD <https://www.usgs.gov/national-hydrography> and NHDPlus <https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus> datasets.
Generates functional Magnetic Resonance Imaging (fMRI) time series or 4D data. Some high-level functions are created for fast data generation with only a few arguments and a diversity of functions to define activation and noise. For more advanced users it is possible to use the low-level functions and manipulate the arguments. See Welvaert et al. (2011) <doi:10.18637/jss.v044.i10>.
This package performs nonparametric estimation in mixture cure models when the cure status is partially known. For details, see Safari et al (2021) <doi:10.1002/bimj.202100156>, Safari et al (2022) <doi:10.1177/09622802221115880> and Safari et al (2023) <doi:10.1007/s10985-023-09591-x>.
Fit univariate non-linear scale mixture of skew-normal(NL-SMSN) regression, details in Garay, Lachos and Abanto-Valle (2011) <doi:10.1016/j.jkss.2010.08.003> and Lachos, Bandyopadhyay and Garay (2011) <doi:10.1016/j.spl.2011.03.019>.
This package provides methods to reduce confounding bias from unmeasured confounders in observational studies of vaccine efficacy using negative control outcomes.
Nonparametric tests for clustered data in pre-post intervention design documented in Cui and Harrar (2021) <doi:10.1002/bimj.201900310> and Harrar and Cui (2022) <doi:10.1016/j.jspi.2022.05.009>. Other than the main test results mentioned in the reference paper, this package also provides a function to calculate the sample size allocations for the input long format data set, and also a function for adjusted/unadjusted confidence intervals calculations. There are also functions to visualize the distribution of data across different intervention groups over time, and also the adjusted/unadjusted confidence intervals.
This package provides a finite-population significance test of the sharp causal null hypothesis that treatment exposure X has no effect on final outcome Y, within the principal stratum of Compliers. A generalized likelihood ratio test statistic is used, and the resulting p-value is exact. Currently, it is assumed that there are only Compliers and Never Takers in the population.
This package provides a variety of functions for the best known and most innovative approaches to nonparametric boundary estimation. The selected methods are concerned with empirical, smoothed, unrestricted as well as constrained fits under both separate and multiple shape constraints. They cover robust approaches to outliers as well as data envelopment techniques based on piecewise polynomials, splines, local linear fitting, extreme values and kernel smoothing. The package also seamlessly allows for Monte Carlo comparisons among these different estimation methods. Its use is illustrated via a number of empirical applications and simulated examples.
This package provides functions complementary to packages nicheROVER and SIBER allowing the user to extract Bayesian estimates from data objects created by the packages nicheROVER and SIBER'. Please see the following publications for detailed methods on nicheROVER and SIBER Hansen et al. (2015) <doi:10.1890/14-0235.1>, Jackson et al. (2011) <do i:10.1111/j.1365-2656.2011.01806.x>, and Layman et al. (2007) <doi:10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2>, respectfully.