Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements likelihood inference based on higher order approximations for nonlinear models with possibly non constant variance.
It provides ensemble capabilities to supervised and unsupervised learning models predictions without using training labels. It decides the relative weights of the different models predictions by using best models predictions as response variable and rest of the mo. User can decide the best model, therefore, It provides freedom to user to ensemble models based on their design solutions.
Implementation of models for the controlled introduction of errors in classification datasets. This package contains the noise models described in Saez (2022) <doi:10.3390/math10203736> that allow corrupting class labels, attributes and both simultaneously.
Scrapes and cleans data from the NHL and ESPN APIs into data.frames and lists. Wraps 125+ endpoints documented in <https://github.com/RentoSaijo/nhlscraper/wiki> from high-level multi-season summaries and award winners to low-level decisecond replays and bookmakers odds, making them more accessible. Features cleaning and visualization tools, primarily for play-by-plays.
Nested loop cross validation for classification purposes for misclassification error rate estimation. The package supports several methodologies for feature selection: random forest, Student t-test, limma, and provides an interface to the following classification methods in the MLInterfaces package: linear, quadratic discriminant analyses, random forest, bagging, prediction analysis for microarray, generalized linear model, support vector machine (svm and ksvm). Visualizations to assess the quality of the classifier are included: plot of the ranks of the features, scores plot for a specific classification algorithm and number of features, misclassification rate for the different number of features and classification algorithms tested and ROC plot. For further details about the methodology, please check: Markus Ruschhaupt, Wolfgang Huber, Annemarie Poustka, and Ulrich Mansmann (2004) <doi:10.2202/1544-6115.1078>.
This package provides a variety of functions for the best known and most innovative approaches to nonparametric boundary estimation. The selected methods are concerned with empirical, smoothed, unrestricted as well as constrained fits under both separate and multiple shape constraints. They cover robust approaches to outliers as well as data envelopment techniques based on piecewise polynomials, splines, local linear fitting, extreme values and kernel smoothing. The package also seamlessly allows for Monte Carlo comparisons among these different estimation methods. Its use is illustrated via a number of empirical applications and simulated examples.
Factorize binary matrices into rank-k components using the logistic function in the updating process. See e.g. Tomé et al (2015) <doi:10.1007/s11045-013-0240-9> .
This package provides statistical methods for network meta-analysis of 1â 5 diagnostic tests to simultaneously compare multiple tests within a missing data framework, including: - Bayesian hierarchical model for network meta-analysis of multiple diagnostic tests (Ma, Lian, Chu, Ibrahim, and Chen (2018) <doi:10.1093/biostatistics/kxx025>) - Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests (Lian, Hodges, and Chu (2019) <doi:10.1080/01621459.2018.1476239>).
This package provides a compact variation of the usual syntax of function declaration, in order to support tidyverse-style quasiquotation of a function's arguments and body.
This package provides a tool for drawing sassy UML (Unified Modeling Language) diagrams based on a simple syntax, see <https://www.nomnoml.com>. Supports styling, R Markdown and exporting diagrams in the PNG format. Note: you need a chromium based browser installed on your system.
Makes NCBI taxonomic data locally available and searchable as an R object.
This package performs a Necessary Condition Analysis (NCA). (Dul, J. 2016. Necessary Condition Analysis (NCA). Logic and Methodology of Necessary but not Sufficient causality." Organizational Research Methods 19(1), 10-52) <doi:10.1177/1094428115584005>. NCA identifies necessary (but not sufficient) conditions in datasets, where x causes (e.g. precedes) y. Instead of drawing a regression line through the middle of the data in an xy-plot, NCA draws the ceiling line. The ceiling line y = f(x) separates the area with observations from the area without observations. (Nearly) all observations are below the ceiling line: y <= f(x). The empty zone is in the upper left hand corner of the xy-plot (with the convention that the x-axis is horizontal and the y-axis is vertical and that values increase upwards and to the right''). The ceiling line is a (piecewise) linear non-decreasing line: a linear step function or a straight line. It indicates which level of x (e.g. an effort or input) is necessary but not sufficient for a (desired) level of y (e.g. good performance or output). A quick start guide for using this package can be found here: <https://repub.eur.nl/pub/78323/> or <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2624981>.
Run simple direct gravitational N-body simulations. The package can access different external N-body simulators (e.g. GADGET-4 by Springel et al. (2021) <doi:10.48550/arXiv.2010.03567>), but also has a simple built-in simulator. This default simulator uses a variable block time step and lets the user choose between a range of integrators, including 4th and 6th order integrators for high-accuracy simulations. Basic top-hat smoothing is available as an option. The code also allows the definition of background particles that are fixed or in uniform motion, not subject to acceleration by other particles.
Fits a non-linear transformation model ('nltm') for analyzing survival data, see Tsodikov (2003) <doi:10.1111/1467-9868.00414>. The class of nltm includes the following currently supported models: Cox proportional hazard, proportional hazard cure, proportional odds, proportional hazard - proportional hazard cure, proportional hazard - proportional odds cure, Gamma frailty, and proportional hazard - proportional odds.
Imputation for both missing covariates and censored observations (optional) for survival data with missing covariates by the nearest neighbor based multiple imputation algorithm as described in Hsu et al. (2006) <doi:10.1002/sim.2452>, and Hsu and Yu (2018) <doi: 10.1177/0962280218772592>. Note that the current version can only impute for a situation with one missing covariate.
Social network analysis has become an essential tool in the study of complex systems. NetExplorer allows to visualize and explore complex systems. It is based on d3js library that brings 1) Graphical user interface; 2) Circular, linear, multilayer and force Layout; 3) Network live exploration and 4) SVG exportation.
Annotated neuroblastoma copy number profiles, a benchmark data set for change-point detection algorithms, as described by Hocking et al. <doi:10.1186/1471-2105-14-164>.
Based on Natural Earth <https://www.naturalearthdata.com/>, a subset of countries can easily be selected with their administrative boundaries, joined with an external data frame and plotted as a thematic map.
Minimize a differentiable function subject to all the variables being non-negative (i.e. >= 0), using a Conjugate-Gradient algorithm based on a modified Polak-Ribiere-Polyak formula as described in (Li, Can, 2013, <https://www.hindawi.com/journals/jam/2013/986317/abs/>).
This package provides Scilab n1qn1'. This takes more memory than traditional L-BFGS. The n1qn1 routine is useful since it allows prespecification of a Hessian. If the Hessian is near enough the truth in optimization it can speed up the optimization problem. The algorithm is described in the Scilab optimization documentation located at <https://www.scilab.org/sites/default/files/optimization_in_scilab.pdf>. This version uses manually modified code from f2c to make this a C only binary.
Non-linear least squares regression with the Levenberg-Marquardt algorithm using multiple starting values for increasing the chance that the minimum found is the global minimum.
This package provides functions for downloading, calibrating, and analyzing atmospheric isotope data bundled into the eddy covariance data products of the National Ecological Observatory Network (NEON) <https://www.neonscience.org>. Calibration tools are provided for carbon and water isotope products. Carbon isotope calibration details are found in Fiorella et al. (2021) <doi:10.1029/2020JG005862>, and the readme file at <https://github.com/lanl/NEONiso>. Tools for calibrating water isotope products have been added as of 0.6.0, but have known deficiencies and should be considered experimental and unsupported.
Color palettes for data visualization inspired by National Parks. Currently contains 15 color schemes and checks for colorblind-friendliness of palettes.
Acquires and synthesizes soil carbon fluxes at sites located in the National Ecological Observatory Network (NEON). Provides flux estimates and associated uncertainty as well as key environmental measurements (soil water, temperature, CO2 concentration) that are used to compute soil fluxes.