Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Model selection method with multiple block-wise imputation for block-wise missing data; see Xue, F., and Qu, A. (2021) <doi:10.1080/01621459.2020.1751176>.
Fits the Bayesian partial least squares regression model introduced in Urbas et al. (2024) <doi:10.1214/24-AOAS1947>. Suitable for univariate and multivariate regression with high-dimensional data.
It provides access to and information about the most important Brazilian economic time series - from the Getulio Vargas Foundation <http://portal.fgv.br/en>, the Central Bank of Brazil <http://www.bcb.gov.br> and the Brazilian Institute of Geography and Statistics <http://www.ibge.gov.br>. It also presents tools for managing, analysing (e.g. generating dynamic reports with a complete analysis of a series) and exporting these time series.
Analyze bioequivalence study data with industrial strength. Sample size could be determined for various crossover designs, such as 2x2 design, 2x4 design, 4x4 design, Balaam design, Two-sequence dual design, and William design. Reference: Chow SC, Liu JP. Design and Analysis of Bioavailability and Bioequivalence Studies. 3rd ed. (2009, ISBN:978-1-58488-668-6).
Bond Pricing and Fixed-Income Valuation of Selected Securities included here serve as a quick reference of Quantitative Methods for undergraduate courses on Fixed-Income and CFA Level I Readings on Fixed-Income Valuation, Risk and Return. CFA Institute ("CFA Program Curriculum 2020 Level I Volumes 1-6. (Vol. 5, pp. 107-151, pp. 237-299)", 2019, ISBN: 9781119593577). Barbara S. Petitt ("Fixed Income Analysis", 2019, ISBN: 9781119628132). Frank J. Fabozzi ("Handbook of Finance: Financial Markets and Instruments", 2008, ISBN: 9780470078143). Frank J. Fabozzi ("Fixed Income Analysis", 2007, ISBN: 9780470052211).
For studying recurrent disease and death with competing risks, comparisons based on the well-known cumulative incidence function can be confounded by different prevalence rates of the competing events. Alternatively, comparisons of the conditional distribution of the survival time given the failure event type are more relevant for investigating the prognosis of different patterns of recurrence disease. This package implements a nonparametric estimator for the conditional cumulative incidence function and a nonparametric conditional bivariate cumulative incidence function for the bivariate gap times proposed in Huang et al. (2016) <doi:10.1111/biom.12494>.
This package implements Bayesian dynamic factor analysis with Stan'. Dynamic factor analysis is a dimension reduction tool for multivariate time series. bayesdfa extends conventional dynamic factor models in several ways. First, extreme events may be estimated in the latent trend by modeling process error with a student-t distribution. Second, alternative constraints (including proportions are allowed). Third, the estimated dynamic factors can be analyzed with hidden Markov models to evaluate support for latent regimes.
This package implements biplot (2d and 3d) of multivariate data based on principal components analysis and diagnostic tools of the quality of the reduction.
Bayesian adaptive trial algorithm implements multiple-stage interim analysis. Package includes data generating function, and Bayesian hypothesis testing function.
Model selection by bootstrapping the stepAIC() procedure.
This package provides a statistical tool to inference the multi-level partial correlations based on multi-subject time series data, especially for brain functional connectivity. It combines both individual and population level inference by using the methods of Qiu and Zhou. (2021)<DOI: 10.1080/01621459.2021.1917417> and Genovese and Wasserman. (2006)<DOI: 10.1198/016214506000000339>. It realizes two reliable estimation methods of partial correlation coefficients, using scaled lasso and lasso. It can be used to estimate individual- or population-level partial correlations, identify nonzero ones, and find out unequal partial correlation coefficients between two populations.
The Bloom Detecting Algorithm enables the detection of blooms within a time series of species abundance and extracts 22 phenological variables. For details, see Karasiewicz et al. (2022) <doi:10.3390/jmse10020174>.
This package provides the estimation algorithm to perform the demand estimation described in Berry, Levinsohn and Pakes (1995) <DOI:10.2307/2171802> . The routine uses analytic gradients and offers a large number of implemented integration methods and optimization routines.
R functions to read EURING data and analyse re-encounter data of birds marked by metal rings. For a tutorial, go to <doi:10.1080/03078698.2014.933053>.
This package provides tools for Bayesian basket trial design and analysis using a novel three-component local power prior framework with global borrowing control, pairwise similarity assessment and a borrowing threshold. Supports simulation-based evaluation of operating characteristics and comparison with other methods. Applicable to both equal and unequal sample size settings in early-phase oncology trials. For more details see Zhou et al. (2023) <doi:10.48550/arXiv.2312.15352>.
Extends the BatchJobs package to run statistical experiments on batch computing clusters. For further details see the project web page.
Generalization of the Bayesian classification and regression tree (CART) model that partitions subjects into terminal nodes and tailors regression model to each terminal node.
This package provides a collection of models for bivariate alternating recurrent event data analysis. Includes non-parametric and semi-parametric methods.
Generate urls and hyperlinks to commonly used biological databases and resources based on standard identifiers. This is primarily useful when writing dynamic reports that reference things like gene symbols in text or tables, allowing you to, for example, convert gene identifiers to hyperlinks pointing to their entry in the NCBI Gene database. Currently supports NCBI Gene, PubMed', Gene Ontology, KEGG', CRAN and Bioconductor.
These are bartMachine's Java dependency libraries. Note: this package has no functionality of its own and should not be installed as a standalone package without bartMachine.
Efficient simulation of Brownian semistationary (BSS) processes using the hybrid simulation scheme, as described in Bennedsen, Lunde, Pakkannen (2017) <arXiv:1507.03004v4>, as well as functions to fit BSS processes to data, and functions to estimate the stochastic volatility process of a BSS process.
The bupaverse is an open-source, integrated suite of R-packages for handling and analysing business process data, developed by the Business Informatics research group at Hasselt University, Belgium. Profoundly inspired by the tidyverse package, the bupaverse package is designed to facilitate the installation and loading of multiple bupaverse packages in a single step. Learn more about bupaverse at the <https://bupar.net> homepage.
Bayes Watch fits an array of Gaussian Graphical Mixture Models to groupings of homogeneous data in time, called regimes, which are modeled as the observed states of a Markov process with unknown transition probabilities. In doing so, Bayes Watch defines a posterior distribution on a vector of regime assignments, which gives meaningful expressions on the probability of every possible change-point. Bayes Watch also allows for an effective and efficient fault detection system that assesses what features in the data where the most responsible for a given change-point. For further details, see: Alexander C. Murph et al. (2023) <doi:10.48550/arXiv.2310.02940>.
Estimation of Bayesian Global Vector Autoregressions (BGVAR) with different prior setups and the possibility to introduce stochastic volatility. Built-in priors include the Minnesota, the stochastic search variable selection and Normal-Gamma (NG) prior. For a reference see also Crespo Cuaresma, J., Feldkircher, M. and F. Huber (2016) "Forecasting with Global Vector Autoregressive Models: a Bayesian Approach", Journal of Applied Econometrics, Vol. 31(7), pp. 1371-1391 <doi:10.1002/jae.2504>. Post-processing functions allow for doing predictions, structurally identify the model with short-run or sign-restrictions and compute impulse response functions, historical decompositions and forecast error variance decompositions. Plotting functions are also available. The package has a companion paper: Boeck, M., Feldkircher, M. and F. Huber (2022) "BGVAR: Bayesian Global Vector Autoregressions with Shrinkage Priors in R", Journal of Statistical Software, Vol. 104(9), pp. 1-28 <doi:10.18637/jss.v104.i09>.