Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Stochastic collapsed variational inference on mixed-membership stochastic blockmodel for networks, incorporating node-level predictors of mixed-membership vectors, as well as dyad-level predictors. For networks observed over time, the model defines a hidden Markov process that allows the effects of node-level predictors to evolve in discrete, historical periods. In addition, the package offers a variety of utilities for exploring results of estimation, including tools for conducting posterior predictive checks of goodness-of-fit and several plotting functions. The package implements methods described in Olivella, Pratt and Imai (2019) Dynamic Stochastic Blockmodel Regression for Social Networks: Application to International Conflicts', available at <https://www.santiagoolivella.info/pdfs/socnet.pdf>.
Given a network (e.g. a food web), estimates several network indices. These include: Ascendency network indices, Direct and indirect dependencies, Effective measures, Environ network indices, General network indices, Pathway analysis, Network uncertainty indices and constraint efficiencies and the trophic level and omnivory indices of food webs.
Network trees recursively partition the data with respect to covariates. Two network tree algorithms are available: model-based trees based on a multivariate normal model and nonparametric trees based on covariance structures. After partitioning, correlation-based networks (psychometric networks) can be fit on the partitioned data. For details see Jones, Mair, Simon, & Zeileis (2020) <doi:10.1007/s11336-020-09731-4>.
This package provides a collection of dynamic network data sets from various sources and multiple authors represented as networkDynamic'-formatted objects.
This package provides a set of functions to visualize National Football League analysis in ggplot2 plots and gt tables.
This package provides a suite of functions to work with data from the National Institutes of Health Brain Development Cohorts Data Hub. The package provides tools to create, clean, process, and filter datasets and associated metadata. These utilities are intended to simplify reproducible data-preparation for future research.
Nonparametric Tests for Main Effects, Simple Effects and Interaction Effect with Censored Data and Two Factorial Influencing Variables.
Measure the dependence structure between two random variables with a new correlation coefficient and extend it to hypothesis test, feature screening and false discovery rate control.
Extends package nat (NeuroAnatomy Toolbox) by providing a collection of NBLAST-related functions for neuronal morphology comparison (Costa et al. (2016) <doi: 10.1016/j.neuron.2016.06.012>).
Statistical tools for analyzing cognitive diagnosis (CD) data collected from small settings using the nonparametric classification (NPCD) framework. The core methods of the NPCD framework includes the nonparametric classification (NPC) method developed by Chiu and Douglas (2013) <DOI:10.1007/s00357-013-9132-9> and the general NPC (GNPC) method developed by Chiu, Sun, and Bian (2018) <DOI:10.1007/s11336-017-9595-4> and Chiu and Köhn (2019) <DOI:10.1007/s11336-019-09660-x>. An extension of the NPCD framework included in the package is the nonparametric method for multiple-choice items (MC-NPC) developed by Wang, Chiu, and Koehn (2023) <DOI:10.3102/10769986221133088>. Functions associated with various extensions concerning the evaluation, validation, and feasibility of the CD analysis are also provided. These topics include the completeness of Q-matrix, Q-matrix refinement method, as well as Q-matrix estimation.
Estimating the first and second derivatives of a regression function by the method of Wang and Lin (2015) <http://www.jmlr.org/papers/v16/wang15b.html>.
This package performs combination tests and sample size calculation for fixed design with survival endpoints using combination tests under either proportional hazards or non-proportional hazards. The combination tests include maximum weighted log-rank test and projection test. The sample size calculation procedure is very flexible, allowing for user-defined hazard ratio function and considering various trial conditions like staggered entry, drop-out etc. The sample size calculation also applies to various cure models such as proportional hazards cure model, cure model with (random) delayed treatments effects. Trial simulation function is also provided to facilitate the empirical power calculation. The references for projection test and maximum weighted logrank test include Brendel et al. (2014) <doi:10.1111/sjos.12059> and Cheng and He (2021) <arXiv:2110.03833>. The references for sample size calculation under proportional hazard include Schoenfeld (1981) <doi:10.1093/biomet/68.1.316> and Freedman (1982) <doi:10.1002/sim.4780010204>. The references for calculation under non-proportional hazards include Lakatos (1988) <doi:10.2307/2531910> and Cheng and He (2023) <doi:10.1002/bimj.202100403>.
Automatic time series modelling with neural networks. Allows fully automatic, semi-manual or fully manual specification of networks. For details of the specification methodology see: (i) Crone and Kourentzes (2010) <doi:10.1016/j.neucom.2010.01.017>; and (ii) Kourentzes et al. (2014) <doi:10.1016/j.eswa.2013.12.011>.
Limpa e simplifica nomes de pessoas para auxiliar no pareamento de banco de dados na ausência de chaves únicas não ambà guas. Detecta e corrige erros tipográficos mais comuns, simplifica opcionalmente termos sujeitos eventualmente a omissão em cadastros, e simplifica foneticamente suas palavras, aplicando variação própria do algoritmo metaphoneBR. (Cleans and simplifies person names to assist in database matching when unambiguous unique keys are unavailable. Detects and corrects common typos, optionally simplifies terms prone to omission in records, and applies phonetic simplification using a custom variation of the metaphoneBR algorithm.) Mation (2025) <doi:10.6082/uchicago.15104>.
This package provides functions to produce advanced ascii graphics, directly to the terminal window. This package utilizes the txtplot() function from the txtplot package, to produce text-based histograms, empirical cumulative distribution function plots, scatterplots with fitted and regression lines, quantile plots, density plots, image plots, and contour plots.
This package implements the procedure from G. J. Ross (2021) - "Nonparametric Detection of Multiple Location-Scale Change Points via Wild Binary Segmentation" <arxiv:2107.01742>. This uses a version of Wild Binary Segmentation to detect multiple location-scale (i.e. mean and/or variance) change points in a sequence of univariate observations, with a strict control on the probability of incorrectly detecting a change point in a sequence which does not contain any.
National Statistical Office of Mongolia (NSO) is the national statistical service and an organization of Mongolian government. NSO provides open access to official data via its API <http://opendata.1212.mn/en/doc>. The package NSO1212 has functions for accessing the API service. The functions are compatible with the API v2.0 and get data sets and its detailed informations from the API.
Calculates phenological cycle and anomalies using a non-parametric approach applied to time series of vegetation indices derived from remote sensing data or field measurements. The package implements basic and high-level functions for manipulating vector data (numerical series) and raster data (satellite derived products). Processing of very large raster files is supported. For more information, please check the following paper: Chávez et al. (2023) <doi:10.3390/rs15010073>.
Calculate NOS (node overlap and segregation) and the associated metrics described in Strona and Veech (2015) <doi:10.1111/2041-210X.12395> and Strona et al. (2018) <doi:10.1111/ecog.03447>. The functions provided in the package enable assessment of structural patterns ranging from complete node segregation to perfect nestedness in a variety of network types. In addition, they provide a measure of network modularity.
This package provides a minimal package for downloading data from GitHub repositories of the nflverse project.
Design and analysis of flexible platform trials with non-concurrent controls. Functions for data generation, analysis, visualization and running simulation studies are provided. The implemented analysis methods are described in: Bofill Roig et al. (2022) <doi:10.1186/s12874-022-01683-w>, Saville et al. (2022) <doi:10.1177/17407745221112013> and Schmidli et al. (2014) <doi:10.1111/biom.12242>.
This package provides residuals and overdispersion metrics to assess the fit of N-mixture models obtained using the package unmarked'. Details on the methods are given in Knape et al. (2017) <doi:10.1101/194340>.
Addressing crucial research questions often necessitates a small sample size due to factors such as distinctive target populations, rarity of the event under study, time and cost constraints, ethical concerns, or group-level unit of analysis. Many readily available analytic methods, however, do not accommodate small sample sizes, and the choice of the best method can be unclear. The npboottprm package enables the execution of nonparametric bootstrap tests with pooled resampling to help fill this gap. Grounded in the statistical methods for small sample size studies detailed in Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, the package facilitates a range of statistical tests, encompassing independent t-tests, paired t-tests, and one-way Analysis of Variance (ANOVA) F-tests. The nonparboot() function undertakes essential computations, yielding detailed outputs which include test statistics, effect sizes, confidence intervals, and bootstrap distributions. Further, npboottprm incorporates an interactive shiny web application, nonparboot_app(), offering intuitive, user-friendly data exploration.
Calculation and presentation of decision-invariant bias adjustment thresholds and intervals for Network Meta-Analysis, as described by Phillippo et al. (2018) <doi:10.1111/rssa.12341>. These describe the smallest changes to the data that would result in a change of decision.