_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-nmmipw 0.1.0
Propagated dependencies: r-numderiv@2016.8-1.1 r-nloptr@2.2.1 r-lava@1.8.2
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=NMMIPW
Licenses: GPL 2+
Synopsis: Inverse Probability Weighting under Non-Monotone Missing
Description:

We fit inverse probability weighting estimator and the augmented inverse probability weighting for non-monotone missing at random data.

r-nailer 1.2.3
Propagated dependencies: r-tibble@3.3.0 r-stringr@1.6.0 r-sensominer@1.28 r-rlang@1.1.6 r-ollamar@1.2.2 r-magrittr@2.0.4 r-glue@1.8.0 r-factominer@2.12 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=NaileR
Licenses: GPL 2+
Synopsis: Interpreting Latent Variables with AI
Description:

This package provides a small package designed for interpreting continuous and categorical latent variables. You provide a data set with a latent variable you want to understand and some other explanatory variables. It provides a description of the latent variable based on the explanatory variables. It also provides a name to the latent variable.

r-nlnet 1.4
Propagated dependencies: r-tsp@1.2.6 r-rocr@1.0-11 r-randomforest@4.7-1.2 r-igraph@2.2.1 r-fdrtool@1.2.18 r-earth@5.3.4 r-e1071@1.7-16 r-coin@1.4-3
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=nlnet
Licenses: GPL 2+
Synopsis: Nonlinear Network, Clustering, and Variable Selection Based on DCOL
Description:

It includes four methods: DCOL-based K-profiles clustering, non-linear network reconstruction, non-linear hierarchical clustering, and variable selection for generalized additive model. References: Tianwei Yu (2018)<DOI: 10.1002/sam.11381>; Haodong Liu and others (2016)<DOI: 10.1371/journal.pone.0158247>; Kai Wang and others (2015)<DOI: 10.1155/2015/918954>; Tianwei Yu and others (2010)<DOI: 10.1109/TCBB.2010.73>.

r-nonlinearicp 0.1.2.1
Propagated dependencies: r-randomforest@4.7-1.2 r-data-tree@1.2.0 r-condindtests@0.1.5 r-catools@1.18.3
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/christinaheinze/nonlinearICP-and-CondIndTests
Licenses: GPL 2+ GPL 3+
Synopsis: Invariant Causal Prediction for Nonlinear Models
Description:

This package performs nonlinear Invariant Causal Prediction to estimate the causal parents of a given target variable from data collected in different experimental or environmental conditions, extending Invariant Causal Prediction from Peters, Buehlmann and Meinshausen (2016), <arXiv:1501.01332>, to nonlinear settings. For more details, see C. Heinze-Deml, J. Peters and N. Meinshausen: Invariant Causal Prediction for Nonlinear Models', <arXiv:1706.08576>.

r-nimblehmc 0.2.4
Propagated dependencies: r-nimble@1.4.0
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=nimbleHMC
Licenses: Modified BSD GPL 2+
Synopsis: Hamiltonian Monte Carlo and Other Gradient-Based MCMC Sampling Algorithms for 'nimble'
Description:

This package provides gradient-based MCMC sampling algorithms for use with the MCMC engine provided by the nimble package. This includes two versions of Hamiltonian Monte Carlo (HMC) No-U-Turn (NUTS) sampling, and (under development) Langevin samplers. The `NUTS_classic` sampler implements the original HMC-NUTS algorithm as described in Hoffman and Gelman (2014) <doi:10.48550/arXiv.1111.4246>. The `NUTS` sampler is a modern version of HMC-NUTS sampling matching the HMC sampler available in version 2.32.2 of Stan (Stan Development Team, 2023). In addition, convenience functions are provided for generating and modifying MCMC configuration objects which employ HMC sampling. Functionality of the nimbleHMC package is described further in Turek, et al (2024) <doi: 10.21105/joss.06745>.

r-nonet 0.4.0
Propagated dependencies: r-tidyverse@2.0.0 r-rlist@0.4.6.2 r-rlang@1.1.6 r-randomforest@4.7-1.2 r-purrr@1.2.0 r-proc@1.19.0.1 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-e1071@1.7-16 r-dplyr@1.1.4 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://open.gslab.com/nonet/
Licenses: Expat
Synopsis: Weighted Average Ensemble without Training Labels
Description:

It provides ensemble capabilities to supervised and unsupervised learning models predictions without using training labels. It decides the relative weights of the different models predictions by using best models predictions as response variable and rest of the mo. User can decide the best model, therefore, It provides freedom to user to ensemble models based on their design solutions.

r-nparmd 0.2.3
Propagated dependencies: r-matrixstats@1.5.0 r-matrixcalc@1.0-6 r-mass@7.3-65 r-gtools@3.9.5 r-formula@1.2-5
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=nparMD
Licenses: GPL 2 GPL 3
Synopsis: Nonparametric Analysis of Multivariate Data in Factorial Designs
Description:

Analysis of multivariate data with two-way completely randomized factorial design. The analysis is based on fully nonparametric, rank-based methods and uses test statistics based on the Dempster's ANOVA, Wilk's Lambda, Lawley-Hotelling and Bartlett-Nanda-Pillai criteria. The multivariate response is allowed to be ordinal, quantitative, binary or a mixture of the different variable types. The package offers two functions performing the analysis, one for small and the other for large sample sizes. The underlying methodology is largely described in Bathke and Harrar (2016) <doi:10.1007/978-3-319-39065-9_7> and in Munzel and Brunner (2000) <doi:10.1016/S0378-3758(99)00212-8> and in Kiefel and Bathke (2022) <doi:10.1515/stat-2022-0112>.

r-nplplot 4.7
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://watson.hgen.pitt.edu/register/
Licenses: GPL 3+
Synopsis: Plotting Linkage and Association Results
Description:

This package provides routines for plotting linkage and association results along a chromosome, with marker names displayed along the top border. There are also routines for generating BED and BedGraph custom tracks for viewing in the UCSC genome browser. The data reformatting program Mega2 uses this package to plot output from a variety of programs.

r-neatr 0.2.1
Propagated dependencies: r-magrittr@2.0.4 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=neatR
Licenses: Expat
Synopsis: Neat Data for Presentation
Description:

Utilities for unambiguous, neat and legible representation of data (date, time stamp, numbers, percentages and strings) for presentation of analysis , aiming for elegance and consistency. The purpose of this package is to format data, that is better for presentation and any automation jobs that reports numbers.

r-nycflights23 0.2.0
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://moderndive.github.io/nycflights23/
Licenses: CC0
Synopsis: Flights and Other Useful Metadata for NYC Outbound Flights in 2023
Description:

Updating the now 10-year-old nycflights13 data package. It contains information about all flights that departed from the three main New York City airports in 2023 and metadata on airlines, airports, weather, and planes.

r-npred 1.1.0
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/zejiang-unsw/NPRED#readme
Licenses: GPL 3
Synopsis: Predictor Identifier: Nonparametric Prediction
Description:

Partial informational correlation (PIC) is used to identify the meaningful predictors to the response from a large set of potential predictors. Details of methodologies used in the package can be found in Sharma, A., Mehrotra, R. (2014). <doi:10.1002/2013WR013845>, Sharma, A., Mehrotra, R., Li, J., & Jha, S. (2016). <doi:10.1016/j.envsoft.2016.05.021>, and Mehrotra, R., & Sharma, A. (2006). <doi:10.1016/j.advwatres.2005.08.007>.

r-nlmixr2 5.0.0
Propagated dependencies: r-tibble@3.3.0 r-rxode2@5.0.1 r-rstudioapi@0.17.1 r-purrr@1.2.0 r-nlmixr2plot@5.0.0 r-nlmixr2extra@5.0.0 r-nlmixr2est@5.0.2 r-magrittr@2.0.4 r-lotri@1.0.2 r-dplyr@1.1.4 r-crayon@1.5.3 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://nlmixr2.org/
Licenses: GPL 3+
Synopsis: Nonlinear Mixed Effects Models in Population PK/PD
Description:

Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).

r-nn2poly 0.1.3
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-pracma@2.4.6 r-matrixstats@1.5.0 r-generics@0.1.4
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://ibidat.github.io/nn2poly/
Licenses: Expat
Synopsis: Neural Network Weights Transformation into Polynomial Coefficients
Description:

This package implements a method that builds the coefficients of a polynomial model that performs almost equivalently as a given neural network (densely connected). This is achieved using Taylor expansion at the activation functions. The obtained polynomial coefficients can be used to explain features (and their interactions) importance in the neural network, therefore working as a tool for interpretability or eXplainable Artificial Intelligence (XAI). See Morala et al. 2021 <doi:10.1016/j.neunet.2021.04.036>, and 2023 <doi:10.1109/TNNLS.2023.3330328>.

r-netrankr 1.2.4
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-matrix@1.7-4 r-igraph@2.2.1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/schochastics/netrankr/
Licenses: Expat
Synopsis: Analyzing Partial Rankings in Networks
Description:

This package implements methods for centrality related analyses of networks. While the package includes the possibility to build more than 20 indices, its main focus lies on index-free assessment of centrality via partial rankings obtained by neighborhood-inclusion or positional dominance. These partial rankings can be analyzed with different methods, including probabilistic methods like computing expected node ranks and relative rank probabilities (how likely is it that a node is more central than another?). The methodology is described in depth in the vignettes and in Schoch (2018) <doi:10.1016/j.socnet.2017.12.003>.

r-npboottprm 0.3.2
Propagated dependencies: r-sn@2.1.1 r-shinythemes@1.2.0 r-shiny@1.11.1 r-mmints@0.2.0 r-mkinfer@1.3 r-mass@7.3-65 r-lmperm@2.1.6 r-ggplot2@4.0.1 r-fgarch@4052.93 r-dt@0.34.0
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/mightymetrika/npboottprm
Licenses: Expat
Synopsis: Nonparametric Bootstrap Test with Pooled Resampling
Description:

Addressing crucial research questions often necessitates a small sample size due to factors such as distinctive target populations, rarity of the event under study, time and cost constraints, ethical concerns, or group-level unit of analysis. Many readily available analytic methods, however, do not accommodate small sample sizes, and the choice of the best method can be unclear. The npboottprm package enables the execution of nonparametric bootstrap tests with pooled resampling to help fill this gap. Grounded in the statistical methods for small sample size studies detailed in Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, the package facilitates a range of statistical tests, encompassing independent t-tests, paired t-tests, and one-way Analysis of Variance (ANOVA) F-tests. The nonparboot() function undertakes essential computations, yielding detailed outputs which include test statistics, effect sizes, confidence intervals, and bootstrap distributions. Further, npboottprm incorporates an interactive shiny web application, nonparboot_app(), offering intuitive, user-friendly data exploration.

r-nflplotr 1.6.0
Propagated dependencies: r-scales@1.4.0 r-s7@0.2.1 r-rlang@1.1.6 r-nflreadr@1.5.0 r-memoise@2.0.1 r-magick@2.9.0 r-lifecycle@1.0.4 r-gt@1.2.0 r-ggplot2@4.0.1 r-ggpath@1.1.1 r-data-table@1.17.8 r-cli@3.6.5 r-cachem@1.1.0
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://nflplotr.nflverse.com
Licenses: Expat
Synopsis: NFL Logo Plots in 'ggplot2' and 'gt'
Description:

This package provides a set of functions to visualize National Football League analysis in ggplot2 plots and gt tables.

r-npistats 0.1.0
Propagated dependencies: r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=NPIstats
Licenses: GPL 3
Synopsis: Nonparametric Predictive Inference
Description:

An implementation of the Nonparametric Predictive Inference approach in R. It provides tools for quantifying uncertainty via lower and upper probabilities. It includes useful functions for pairwise and multiple comparisons: comparing two groups with and without terminated tails, selecting the best group, selecting the subset of best groups, selecting the subset including the best group.

r-nimbleapt 1.0.7
Propagated dependencies: r-nimble@1.4.0
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/DRJP/nimbleAPT
Licenses: Modified BSD
Synopsis: Adaptive Parallel Tempering for 'NIMBLE'
Description:

This package provides functions for adaptive parallel tempering (APT) with NIMBLE models. Adapted from Lacki & Miasojedow (2016) <DOI:10.1007/s11222-015-9579-0> and Miasojedow, Moulines and Vihola (2013) <DOI:10.1080/10618600.2013.778779>.

r-niarules 0.3.1
Propagated dependencies: r-rlang@1.1.6 r-rgl@1.3.31 r-rcpp@1.1.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/firefly-cpp/niarules
Licenses: Expat
Synopsis: Numerical Association Rule Mining using Population-Based Nature-Inspired Algorithms
Description:

Framework is devoted to mining numerical association rules through the utilization of nature-inspired algorithms for optimization. Drawing inspiration from the NiaARM Python and the NiaARM Julia packages, this repository introduces the capability to perform numerical association rule mining in the R programming language. Fister Jr., Iglesias, Galvez, Del Ser, Osaba and Fister (2018) <doi:10.1007/978-3-030-03493-1_9>.

r-neoniso 0.7.2
Propagated dependencies: r-zoo@1.8-14 r-tidyselect@1.2.1 r-rlang@1.1.6 r-rhdf5@2.54.0 r-r-utils@2.13.0 r-neonutilities@3.0.2 r-magrittr@2.0.4 r-lubridate@1.9.4 r-httr@1.4.7 r-gridextra@2.3 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-data-table@1.17.8 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/lanl/NEONiso
Licenses: GPL 3
Synopsis: Tools to Calibrate and Work with NEON Atmospheric Isotope Data
Description:

This package provides functions for downloading, calibrating, and analyzing atmospheric isotope data bundled into the eddy covariance data products of the National Ecological Observatory Network (NEON) <https://www.neonscience.org>. Calibration tools are provided for carbon and water isotope products. Carbon isotope calibration details are found in Fiorella et al. (2021) <doi:10.1029/2020JG005862>, and the readme file at <https://github.com/lanl/NEONiso>. Tools for calibrating water isotope products have been added as of 0.6.0, but have known deficiencies and should be considered experimental and unsupported.

r-naivereg 1.0.5
Propagated dependencies: r-ncvreg@3.16.0 r-grpreg@3.5.0 r-gmm@1.9-1 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=naivereg
Licenses: GPL 2+
Synopsis: Nonparametric Additive Instrumental Variable Estimator and Related IV Methods
Description:

In empirical studies, instrumental variable (IV) regression is the signature method to solve the endogeneity problem. If we enforce the exogeneity condition of the IV, it is likely that we end up with a large set of IVs without knowing which ones are good. Also, one could face the model uncertainty for structural equation, as large micro dataset is commonly available nowadays. This package uses adaptive group lasso and B-spline methods to select the nonparametric components of the IV function, with the linear function being a special case (naivereg). The package also incorporates two stage least squares estimator (2SLS), generalized method of moment (GMM), generalized empirical likelihood (GEL) methods post instrument selection, logistic-regression instrumental variables estimator (LIVE, for dummy endogenous variable problem), double-selection plus instrumental variable estimator (DS-IV) and double selection plus logistic regression instrumental variable estimator (DS-LIVE), where the double selection methods are useful for high-dimensional structural equation models. The naivereg is nonparametric version of ivregress in Stata with IV selection and high dimensional features. The package is based on the paper by Q. Fan and W. Zhong, "Nonparametric Additive Instrumental Variable Estimator: A Group Shrinkage Estimation Perspective" (2018), Journal of Business & Economic Statistics <doi:10.1080/07350015.2016.1180991> as well as a series of working papers led by the same authors.

r-nnfor 0.9.9
Propagated dependencies: r-uroot@2.1-3 r-tsutils@0.9.4 r-plotrix@3.8-13 r-neuralnet@1.44.2 r-mass@7.3-65 r-glmnet@4.1-10 r-generics@0.1.4 r-forecast@8.24.0
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://kourentzes.com/forecasting/2019/01/16/tutorial-for-the-nnfor-r-package/
Licenses: GPL 3
Synopsis: Time Series Forecasting with Neural Networks
Description:

Automatic time series modelling with neural networks. Allows fully automatic, semi-manual or fully manual specification of networks. For details of the specification methodology see: (i) Crone and Kourentzes (2010) <doi:10.1016/j.neucom.2010.01.017>; and (ii) Kourentzes et al. (2014) <doi:10.1016/j.eswa.2013.12.011>.

r-narray 0.5.2
Propagated dependencies: r-stringr@1.6.0 r-rcpp@1.1.0 r-progress@1.2.3
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/mschubert/narray
Licenses: ASL 2.0 FSDG-compatible
Synopsis: Subset- And Name-Aware Array Utility Functions
Description:

Stacking arrays according to dimension names, subset-aware splitting and mapping of functions, intersecting along arbitrary dimensions, converting to and from data.frames, and many other helper functions.

r-neuroim 0.0.6
Propagated dependencies: r-yaimpute@1.0-34.1 r-stringr@1.6.0 r-rgl@1.3.31 r-readr@2.1.6 r-rcpp@1.1.0 r-matrix@1.7-4 r-iterators@1.0.14 r-hash@2.2.6.3 r-assertthat@0.2.1 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=neuroim
Licenses: GPL 2+
Synopsis: Data Structures and Handling for Neuroimaging Data
Description:

This package provides a collection of data structures that represent volumetric brain imaging data. The focus is on basic data handling for 3D and 4D neuroimaging data. In addition, there are function to read and write NIFTI files and limited support for reading AFNI files.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208