Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains several Bayesian models for data analysis of psychological tests. A user friendly interface for these models should enable students and researchers to perform professional level Bayesian data analysis without advanced knowledge in programming and Bayesian statistics. This package is based on the Stan platform (Carpenter et el. 2017 <doi:10.18637/jss.v076.i01>).
We use a Bayesian approach to run individual patient data meta-analysis and network meta-analysis using JAGS'. The methods incorporate shrinkage methods and calculate patient-specific treatment effects as described in Seo et al. (2021) <DOI:10.1002/sim.8859>. This package also includes user-friendly functions that impute missing data in an individual patient data using mice-related packages.
R functions for "The Basics of Item Response Theory Using R" by Frank B. Baker and Seock-Ho Kim (Springer, 2017, ISBN-13: 978-3-319-54204-1) including iccplot(), icccal(), icc(), iccfit(), groupinv(), tcc(), ability(), tif(), and rasch(). For example, iccplot() plots an item characteristic curve under the two-parameter logistic model.
Analyze bioequivalence study data with industrial strength. Sample size could be determined for various crossover designs, such as 2x2 design, 2x4 design, 4x4 design, Balaam design, Two-sequence dual design, and William design. Reference: Chow SC, Liu JP. Design and Analysis of Bioavailability and Bioequivalence Studies. 3rd ed. (2009, ISBN:978-1-58488-668-6).
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. BEAST2 is commonly accompanied by BEAUti 2', Tracer and DensiTree'. babette provides for an alternative workflow of using all these tools separately. This allows doing complex Bayesian phylogenetics easily and reproducibly from R'.
This package performs statistical estimation and inference-related computations by accessing and executing modified versions of Fortran subroutines originally published in the Association for Computing Machinery (ACM) journal Transactions on Mathematical Software (TOMS) by Bunch, Gay and Welsch (1993) <doi:10.1145/151271.151279>. The acronym BGW (from the authors last names) will be used when making reference to technical content (e.g., algorithm, methodology) that originally appeared in ACM TOMS. A key feature of BGW is that it exploits the special structure of statistical estimation problems within a trust-region-based optimization approach to produce an estimation algorithm that is much more effective than the usual practice of using optimization methods and codes originally developed for general optimization. The bgw package bundles R wrapper (and related) functions with modified Fortran source code so that it can be compiled and linked in the R environment for fast execution. This version implements a function ('bgw_mle.R') that performs maximum likelihood estimation (MLE) for a user-provided model object that computes probabilities (a.k.a. probability densities). The original motivation for producing this package was to provide fast, efficient, and reliable MLE for discrete choice models that can be called from the Apollo choice modelling R package ( see <https://www.apollochoicemodelling.com>). Starting with the release of Apollo 3.0, BGW is the default estimation package. However, estimation can also be performed using BGW in a stand-alone fashion without using Apollo (as shown in simple examples included in the package). Note also that BGW capabilities are not limited to MLE, and future extension to other estimators (e.g., nonlinear least squares, generalized method of moments, etc.) is possible. The Fortran code included in bgw was modified by one of the original BGW authors (Bunch) under his rights as confirmed by direct consultation with the ACM Intellectual Property and Rights Manager. See <https://authors.acm.org/author-resources/author-rights>. The main requirement is clear citation of the original publication (see above).
Enables binary package installations on Linux distributions. Provides functions to manage packages via the distribution's package manager. Also provides transparent integration with R's install.packages() and a fallback mechanism. When installed as a system package, interacts with the system's package manager without requiring administrative privileges via an integrated D-Bus service; otherwise, uses sudo. Currently, the following backends are supported: DNF, APT, ALPM.
This package provides functions to reconstruct, generate, and simulate synchronous, asynchronous, probabilistic, and temporal Boolean networks. Provides also functions to analyze and visualize attractors in Boolean networks <doi:10.1093/bioinformatics/btq124>.
The goal of the package is to provide an easy-to-use method for estimating degrees of relatedness (up to the second degree) for extreme low-coverage data. The package also allows users to quantify and visualise the level of confidence in the estimated degrees of relatedness.
Calculates several entropy metrics for spatial data inspired by Boltzmann's entropy formula. It includes metrics introduced by Cushman for landscape mosaics (Cushman (2015) <doi:10.1007/s10980-015-0305-2>), and landscape gradients and point patterns (Cushman (2021) <doi:10.3390/e23121616>); by Zhao and Zhang for landscape mosaics (Zhao and Zhang (2019) <doi:10.1007/s10980-019-00876-x>); and by Gao et al. for landscape gradients (Gao et al. (2018) <doi:10.1111/tgis.12315>; Gao and Li (2019) <doi:10.1007/s10980-019-00854-3>).
The core algorithm is described in "Ball mapper: a shape summary for topological data analysis" by Pawel Dlotko, (2019) <arXiv:1901.07410>. Please consult the following youtube video <https://www.youtube.com/watch?v=M9Dm1nl_zSQfor> the idea of functionality. Ball Mapper provide a topologically accurate summary of a data in a form of an abstract graph. To create it, please provide the coordinates of points (in the points array), values of a function of interest at those points (can be initialized randomly if you do not have it) and the value epsilon which is the radius of the ball in the Ball Mapper construction. It can be understood as the minimal resolution on which we use to create the model of the data.
Combine diverse evidence across multiple studies to test a high level scientific theory. The methods can also be used as an alternative to a standard meta-analysis.
Generating multiple binary and normal variables simultaneously given marginal characteristics and association structure based on the methodology proposed by Demirtas and Doganay (2012) <DOI:10.1080/10543406.2010.521874>.
This package provides tools to estimate soil organic carbon stocks and sequestration rates in blue carbon ecosystems. BlueCarbon contains functions to estimate and correct for core compaction, estimate sample thickness, estimate organic carbon content from organic matter content, estimate organic carbon stocks and sequestration rates, and visualize the error of carbon stock extrapolation.
Posterior distribution in the Black-Litterman model is computed from a prior distribution given in the form of a time series of asset returns and a continuous distribution of views provided by the user as an external function.
This package provides advanced Bayesian methods to estimate abundance and run-timing from temporally-stratified Petersen mark-recapture experiments. Methods include hierarchical modelling of the capture probabilities and spline smoothing of the daily run size. Theory described in Bonner and Schwarz (2011) <doi:10.1111/j.1541-0420.2011.01599.x>.
Extends the BatchJobs package to run statistical experiments on batch computing clusters. For further details see the project web page.
Classical Boson Sampling using the algorithm of Clifford and Clifford (2017) <arXiv:1706.01260>. Also provides functions for generating random unitary matrices, evaluation of matrix permanents (both real and complex) and evaluation of complex permanent minors.
BRIC-seq is a genome-wide approach for determining RNA stability in mammalian cells. This package provides a series of functions for performing quality check of your BRIC-seq data, calculation of RNA half-life for each transcript and comparison of RNA half-lives between two conditions.
Instructor-developed tools for Analytics and Quantitative Methods (AQM) courses at Babson College. Included are compact descriptive statistics for data frames and lists, expanded reporting and graphics for linear regressions, and formatted reports for best subsets analyses.
This package creates plots showing scored HR experiments and plots of distribution of means of ranks of HR score from bootstrapping. Authors (2019) <doi:10.5281/zenodo.3374507>.
Bayesian Network Structure Learning from Data with Missing Values. The package implements the Silander-Myllymaki complete search, the Max-Min Parents-and-Children, the Hill-Climbing, the Max-Min Hill-climbing heuristic searches, and the Structural Expectation-Maximization algorithm. Available scoring functions are BDeu, AIC, BIC. The package also implements methods for generating and using bootstrap samples, imputed data, inference.
This package contains all the necessary tools to process audio recordings of various formats (e.g., WAV, WAC, MP3, ZC), filter noisy files, display audio signals, detect and extract automatically acoustic features for further analysis such as classification.
This package performs unadjusted Bayesian survival analysis for right censored time-to-event data. The main function, BayesSurv(), computes the posterior mean and a credible band for the survival function and for the cumulative hazard, as well as the posterior mean for the hazard, starting from a piecewise exponential (histogram) prior with Gamma distributed heights that are either independent, or have a Markovian dependence structure. A function, PlotBayesSurv(), is provided to easily create plots of the posterior means of the hazard, cumulative hazard and survival function, with a credible band accompanying the latter two. The priors and samplers are described in more detail in Castillo and Van der Pas (2020) "Multiscale Bayesian survival analysis" <arXiv:2005.02889>. In that paper it is also shown that the credible bands for the survival function and the cumulative hazard can be considered confidence bands (under mild conditions) and thus offer reliable uncertainty quantification.