Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Providing mean partition for ensemble clustering by optimal transport alignment(OTA), uncertainty measures for both partition-wise and cluster-wise assessment and multiple visualization functions to show uncertainty, for instance, membership heat map and plot of covering point set. A partition refers to an overall clustering result. Jia Li, Beomseok Seo, and Lin Lin (2019) <doi:10.1002/sam.11418>. Lixiang Zhang, Lin Lin, and Jia Li (2020) <doi:10.1093/bioinformatics/btaa165>.
Distributed reproducible computing framework, adopting ideas from git, docker and other software. By defining a lightweight interface around the inputs and outputs of an analysis, a lot of the repetitive work for reproducible research can be automated. We define a simple format for organising and describing work that facilitates collaborative reproducible research and acknowledges that all analyses are run multiple times over their lifespans.
This package provides functionality to construct standardised tables from health care data formatted according to the Observational Medical Outcomes Partnership (OMOP) Common Data Model. The package includes tools to build key tables such as observation period and drug era, among others.
This package provides functions for the design process of survey sampling, with specific tools for multi-wave and multi-phase designs. Perform optimum allocation using Neyman (1934) <doi:10.2307/2342192> or Wright (2012) <doi:10.1080/00031305.2012.733679> allocation, split strata based on quantiles or values of known variables, randomly select samples from strata, allocate sampling waves iteratively, and organize a complex survey design. Also includes a Shiny application for observing the effects of different strata splits. A paper on this package was published in the Journal of Statistical Software <doi:10.18637/jss.v114.i10>.
This contains functions and data used by the Open Visualization Academy classes on data processing and visualization. The tutorial included with this package requires the gradethis package which can be installed using "remotes::install_github('rstudio/gradethis')".
This package provides a collection of functions to construct sets of orthogonal polynomials and their recurrence relations. Additional functions are provided to calculate the derivative, integral, value and roots of lists of polynomial objects.
Maps of Australian coastline and administrative regions. Data can be drawn or accessed directly as simple features objects. Includes simple functions for country or state maps of Australia and in-built data sets of administrative regions from the Australian Bureau of Statistics <https://www.abs.gov.au/>. Layers include electoral divisions and local government areas, simplified from the original sources but with sufficient detail to allow mapping of a local municipality.
This database contains necessary data relevant to medical costs on obesity throughout the United States. This database, in form of an R package, could output necessary data frames relevant to obesity costs, where the clients could easily manipulate the output using difference parameters, e.g. relative risks for each illnesses. This package contributes to parts of our published journal named "Modeling the Economic Cost of Obesity Risk and Its Relation to the Health Insurance Premium in the United States: A State Level Analysis". Please use the following citation for the journal: Woods Thomas, Tatjana Miljkovic (2022) "Modeling the Economic Cost of Obesity Risk and Its Relation to the Health Insurance Premium in the United States: A State Level Analysis" <doi:10.3390/risks10100197>. The database is composed of the following main tables: 1. Relative_Risks: (constant) Relative risks for a given disease group with a risk factor of obesity; 2. Disease_Cost: (obesity_cost_disease) Supplementary output with all variables related to individual disease groups in a given state and year; 3. Full_Cost: (obesity_cost_full) Complete output with all variables used to make cost calculations, as well as cost calculations in a given state and year; 4. National_Summary: (obesity_cost_national_summary) National summary cost calculations in a given year. Three functions are included to assist users in calling and adjusting the mentioned tables and they are data_load(), data_produce(), and rel_risk_fun().
Two-stage design for single-arm phase II trials with time-to-event endpoints (e.g., clinical trials on immunotherapies among cancer patients) can be calculated using this package. Two notable advantages of the package: 1) It provides flexible choices from three design methods (optimal, minmax, and admissible), and 2) the power of the design is more accurately calculated using the exact variance in the one-sample log-rank test. The package can be used for 1) planning the sample sizes and other design parameters, and 2) conducting the interim and final analyses for the Go/No-go decisions. More details about the design method can be found in: Wu, J, Chen L, Wei J, Weiss H, Chauhan A. (2020). <doi:10.1002/pst.1983>.
Analysis of molecular marker data from model and non-model systems. For the later, it allows statistical analysis by simultaneously estimating linkage and linkage phases (genetic map construction) according to Wu and colleagues (2002) <doi:10.1006/tpbi.2002.1577>. All analysis are based on multi-point approaches using hidden Markov models.
An integrated R interface to the Overture API (<https://docs.overturemaps.org/>). Allows R users to return Overture data as dbplyr data frames or materialized sf spatial data frames.
The openMSE package is designed for building operating models, doing simulation modelling and management strategy evaluation for fisheries. openMSE is an umbrella package for the MSEtool (Management Strategy Evaluation toolkit), DLMtool (Data-Limited Methods toolkit), and SAMtool (Stock Assessment Methods toolkit) packages. By loading and installing openMSE', users have access to the full functionality contained within these packages. Learn more about openMSE at <https://openmse.com/>.
Implementation of a likelihood ratio test of differential onset of senescence between two groups. Given two groups with measures of age and of an individual trait likely to be subjected to senescence (e.g. body mass), OnAge provides an asymptotic p-value for the null hypothesis that senescence starts at the same age in both groups. The package implements the procedure used in Douhard et al. (2017) <doi:10.1111/oik.04421>.
This package implements the Bayesian online changepoint detection method by Adams and MacKay (2007) <arXiv:0710.3742> for univariate or multivariate data. Gaussian and Poisson probability models are implemented. Provides post-processing functions with alternative ways to extract changepoints.
This package implements Bayesian data analyses of balanced repeatability and reproducibility studies with ordinal measurements. Model fitting is based on MCMC posterior sampling with rjags'. Function ordinalRR() directly carries out the model fitting, and this function has the flexibility to allow the user to specify key aspects of the model, e.g., fixed versus random effects. Functions for preprocessing data and for the numerical and graphical display of a fitted model are also provided. There are also functions for displaying the model at fixed (user-specified) parameters and for simulating a hypothetical data set at a fixed (user-specified) set of parameters for a random-effects rater population. For additional technical details, refer to Culp, Ryan, Chen, and Hamada (2018) and cite this Technometrics paper when referencing any aspect of this work. The demo of this package reproduces results from the Technometrics paper.
This package provides functions for creating ensembles of optimal trees for regression, classification (Khan, Z., Gul, A., Perperoglou, A., Miftahuddin, M., Mahmoud, O., Adler, W., & Lausen, B. (2019). (2019) <doi:10.1007/s11634-019-00364-9>) and class membership probability estimation (Khan, Z, Gul, A, Mahmoud, O, Miftahuddin, M, Perperoglou, A, Adler, W & Lausen, B (2016) <doi:10.1007/978-3-319-25226-1_34>) are given. A few trees are selected from an initial set of trees grown by random forest for the ensemble on the basis of their individual and collective performance. Three different methods of tree selection for the case of classification are given. The prediction functions return estimates of the test responses and their class membership probabilities. Unexplained variations, error rates, confusion matrix, Brier scores, etc. are also returned for the test data.
Fit a variety of models to two-way tables with ordered categories. Most of the models are appropriate to apply to tables of that have correlated ordered response categories. There is a particular interest in rater data and models for rescore tables. Some utility functions (e.g., Cohen's kappa and weighted kappa) support more general work on rater agreement. Because the names of the models are very similar, the functions that implement them are organized by last name of the primary author of the article or book that suggested the model, with the name of the function beginning with that author's name and an underscore. This may make some models more difficult to locate if one doesn't have the original sources. The vignettes and tests can help to locate models of interest. For more dertaiils see the following references: Agresti, A. (1983) <doi:10.1016/0167-7152(83)90051-2> "A Simple Diagonals-Parameter Symmetry And Quasi-Symmetry Model", Agrestim A. (1983) <doi:10.2307/2531022> "Testing Marginal Homogeneity for Ordinal Categorical Variables", Agresti, A. (1988) <doi:10.2307/2531866> "A Model For Agreement Between Ratings On An Ordinal Scale", Agresti, A. (1989) <doi:10.1016/0167-7152(89)90104-1> "An Agreement Model With Kappa As Parameter", Agresti, A. (2010 ISBN:978-0470082898) "Analysis Of Ordinal Categorical Data", Bhapkar, V. P. (1966) <doi:10.1080/01621459.1966.10502021> "A Note On The Equivalence Of Two Test Criteria For Hypotheses In Categorical Data", Bhapkar, V. P. (1979) <doi:10.2307/2530344> "On Tests Of Marginal Symmetry And Quasi-Symmetry In Two And Three-Dimensional Contingency Tables", Bowker, A. H. (1948) <doi:10.2307/2280710> "A Test For Symmetry In Contingency Tables", Clayton, D. G. (1974) <doi:10.2307/2335638> "Some Odds Ratio Statistics For The Analysis Of Ordered Categorical Data", Cliff, N. (1993) <doi:10.1037/0033-2909.114.3.494> "Dominance Statistics: Ordinal Analyses To Answer Ordinal Questions", Cliff, N. (1996 ISBN:978-0805813333) "Ordinal Methods For Behavioral Data Analysis", Goodman, L. A. (1979) <doi:10.1080/01621459.1979.10481650> "Simple Models For The Analysis Of Association In Cross-Classifications Having Ordered Categories", Goodman, L. A. (1979) <doi:10.2307/2335159> "Multiplicative Models For Square Contingency Tables With Ordered Categories", Ireland, C. T., Ku, H. H., & Kullback, S. (1969) <doi:10.2307/2286071> "Symmetry And Marginal Homogeneity Of An r à r Contingency Table", Ishi-kuntz, M. (1994 ISBN:978-0803943766) "Ordinal Log-linear Models", McCullah, P. (1977) <doi:10.2307/2345320> "A Logistic Model For Paired Comparisons With Ordered Categorical Data", McCullagh, P. (1978) <doi:10.2307/2335224> A Class Of Parametric Models For The Analysis Of Square Contingency Tables With Ordered Categories", McCullagh, P. (1980) <doi:10.1111/j.2517-6161.1980.tb01109.x> "Regression Models For Ordinal Data", Penn State: Eberly College of Science (undated) <https://online.stat.psu.edu/stat504/lesson/11> "Stat 504: Analysis of Discrete Data, 11. Advanced Topics I", Schuster, C. (2001) <doi:10.3102/10769986026003331> "Kappa As A Parameter Of A Symmetry Model For Rater Agreement", Shoukri, M. M. (2004 ISBN:978-1584883210). "Measures Of Interobserver Agreement", Stuart, A. (1953) <doi:10.2307/2333101> "The Estimation Of And Comparison Of Strengths Of Association In Contingency Tables", Stuart, A. (1955) <doi:10.2307/2333387> "A Test For Homogeneity Of The Marginal Distributions In A Two-Way Classification", von Eye, A., & Mun, E. Y. (2005 ISBN:978-0805849677) "Analyzing Rater Agreement: Manifest Variable Methods".
Likelihood based optimal partitioning and indicator species analysis. Finding the best binary partition for each species based on model selection, with the possibility to take into account modifying/confounding variables as described in Kemencei et al. (2014) <doi:10.1556/ComEc.15.2014.2.6>. The package implements binary and multi-level response models, various measures of uncertainty, Lorenz-curve based thresholding, with native support for parallel computations.
In biomedical studies, researchers are often interested in assessing the association between one or more ordinal explanatory variables and an outcome variable, at the same time adjusting for covariates of any type. The outcome variable may be continuous, binary, or represent censored survival times. In the absence of a precise knowledge of the response function, using monotonicity constraints on the ordinal variables improves efficiency in estimating parameters, especially when sample sizes are small. This package implements an active set algorithm that efficiently computes such estimators.
We introduce an R function one_two_sample() which can deal with one and two (normal) samples, Ying-Ying Zhang, Yi Wei (2012) <doi:10.2991/asshm-13.2013.29>. For one normal sample x, the function reports descriptive statistics, plot, interval estimation and test of hypothesis of x. For two normal samples x and y, the function reports descriptive statistics, plot, interval estimation and test of hypothesis of x and y, respectively. It also reports interval estimation and test of hypothesis of mu1-mu2 (the difference of the means of x and y) and sigma1^2 / sigma2^2 (the ratio of the variances of x and y), tests whether x and y are from the same population, finds the correlation coefficient of x and y if x and y have the same length.
This package provides tools for processing and analyzing data from the O-GlcNAcAtlas database <https://oglcnac.org/>, as described in Ma (2021) <doi:10.1093/glycob/cwab003>. It integrates UniProt <https://www.uniprot.org/> API calls to retrieve additional information. It is specifically designed for research workflows involving O-GlcNAcAtlas data, providing a flexible and user-friendly interface for customizing and downloading processed results. Interactive elements allow users to easily adjust parameters and handle various biological datasets.
Interface with the One Health VBD (vector-borne disease) Hub <https://vbdhub.org/> and related repositories (VectorByte <https://www.vectorbyte.org>, GBIF <https://www.gbif.org> and AREAdata <https://pearselab.github.io/areadata/>) directly to find, download, and subset vector-borne disease data.
Estimation of value and hedging strategy of call and put options, based on optimal hedging and Monte Carlo method, from Chapter 3 of Statistical Methods for Financial Engineering', by Bruno Remillard, CRC Press, (2013).
Download and import of OpenStreetMap ('OSM') data as sf or sp objects. OSM data are extracted from the Overpass web server (<https://overpass-api.de/>) and processed with very fast C++ routines for return to R'.