Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Predictive scores must be updated with care, because actions taken on the basis of existing risk scores causes bias in risk estimates from the updated score. A holdout set is a straightforward way to manage this problem: a proportion of the population is held-out from computation of the previous risk score. This package provides tools to estimate a size for this holdout set and associated errors. Comprehensive vignettes are included. Please see: Haidar-Wehbe S, Emerson SR, Aslett LJM, Liley J (2022) <doi:10.48550/arXiv.2202.06374> (to appear in Annals of Applied Statistics) for details of methods.
The Open Bodem Index (OBI) is a method to evaluate the quality of soils of agricultural fields in The Netherlands and the sustainability of the current agricultural practices. The OBI score is based on four main criteria: chemical, physical, biological and management, which consist of more than 21 indicators. By providing results of a soil analysis and management info the OBIC package can be use to calculate he scores, indicators and derivatives that are used by the OBI. More information about the Open Bodem Index can be found at <https://openbodemindex.nl/>.
Analyses of OTU tables produced by 16S rRNA gene amplicon sequencing, as well as example data. It contains the data and scripts used in the paper Linz, et al. (2017) "Bacterial community composition and dynamics spanning five years in freshwater bog lakes," <doi: 10.1128/mSphere.00169-17>.
This package provides a modified version of alternating logistic regressions (ALR) with estimation based on orthogonalized residuals (ORTH) is implemented, which use paired estimating equations to jointly estimate parameters in marginal mean and within-association models. The within-cluster association between ordinal responses is modeled by global pairwise odds ratios (POR). A finite-sample bias correction is provided to POR parameter estimates based on matrix multiplicative adjusted orthogonalized residuals (MMORTH) for correcting estimating equations, and different bias-corrected variance estimators such as BC1, BC2, and BC3.
Facilitates the automatic detection of acoustic signals, providing functions to diagnose and optimize the performance of detection routines. Detections from other software can also be explored and optimized. This package has been peer-reviewed by rOpenSci. Araya-Salas et al. (2022) <doi:10.1101/2022.12.13.520253>.
This database contains necessary data relevant to medical costs on obesity throughout the United States. This database, in form of an R package, could output necessary data frames relevant to obesity costs, where the clients could easily manipulate the output using difference parameters, e.g. relative risks for each illnesses. This package contributes to parts of our published journal named "Modeling the Economic Cost of Obesity Risk and Its Relation to the Health Insurance Premium in the United States: A State Level Analysis". Please use the following citation for the journal: Woods Thomas, Tatjana Miljkovic (2022) "Modeling the Economic Cost of Obesity Risk and Its Relation to the Health Insurance Premium in the United States: A State Level Analysis" <doi:10.3390/risks10100197>. The database is composed of the following main tables: 1. Relative_Risks: (constant) Relative risks for a given disease group with a risk factor of obesity; 2. Disease_Cost: (obesity_cost_disease) Supplementary output with all variables related to individual disease groups in a given state and year; 3. Full_Cost: (obesity_cost_full) Complete output with all variables used to make cost calculations, as well as cost calculations in a given state and year; 4. National_Summary: (obesity_cost_national_summary) National summary cost calculations in a given year. Three functions are included to assist users in calling and adjusting the mentioned tables and they are data_load(), data_produce(), and rel_risk_fun().
Computes the routing distribution, the expectation of the number of broadcasts, transmissions and receptions considering an Opportunistic transport model. It provides theoretical results and also estimated values based on Monte Carlo simulations.
The separate p-values of SNPs, RNA expressions and DNA methylations are calculated by KM regression. The correlation between different omics data are taken into account. This method can be applied to either samples with all three types of omics data or samples with two types.
Open Location Codes <http://openlocationcode.com/> are a Google-created standard for identifying geographic locations. olctools provides utilities for validating, encoding and decoding entries that follow this standard.
Match, download, convert and import Open Street Map data extracts obtained from several providers.
Computes A-, MV-, D- and E-optimal or near-optimal block designs for two-colour cDNA microarray experiments using the linear fixed effects and mixed effects models where the interest is in a comparison of all possible elementary treatment contrasts. The algorithms used in this package are based on the treatment exchange and array exchange algorithms of Debusho, Gemechu and Haines (2018) <doi:10.1080/03610918.2018.1429617>. The package also provides an optional method of using the graphical user interface (GUI) R package tcltk to ensure that it is user friendly.
An algorithm for fitting interpretable additive neural networks for identifiable and visualizable feature effects using post hoc orthogonalization. Fit custom neural networks intuitively using established R formula notation, including interaction effects of arbitrary order while preserving identifiability to enable a functional decomposition of the prediction function. For more details see Koehler et al. (2025) <doi:10.1038/s44387-025-00033-7>.
Observational studies are limited in that there could be an unmeasured variable related to both the response variable and the primary predictor. If this unmeasured variable were included in the analysis it would change the relationship (possibly changing the conclusions). Sensitivity analysis is a way to see how much of a relationship needs to exist with the unmeasured variable before the conclusions change. This package provides tools for doing a sensitivity analysis for regression (linear, logistic, and cox) style models.
This package provides a wrapper for the Onboard Data building data API <https://api.onboarddata.io/swagger>. Along with streamlining access to the API, this package simplifies access to sensor time series data, metadata (sensors, equipment, and buildings), and details about the Onboard data model/ontology.
This package provides an end-to-end workflow for integrative analysis of two omics layers using sparse canonical correlation analysis (sCCA), including sample alignment, feature selection, network edge construction, and visualization of gene-metabolite relationships. The underlying methods are based on penalized matrix decomposition and sparse CCA (Witten, Tibshirani and Hastie (2009) <doi:10.1093/biostatistics/kxp008>), with design principles inspired by multivariate integrative frameworks such as mixOmics (Rohart et al. (2017) <doi:10.1371/journal.pcbi.1005752>).
This package provides a user-friendly R-based software package for gene clustering. Clusters are given by genes matched to prespecified profiles across various ordered treatment groups. It is particularly useful for analyzing data obtained from short time-course or dose-response microarray experiments.
Estimate location-shift models or rating-scale models accounting for response styles (RSRS) for the regression analysis of ordinal responses.
This package provides functions to retrieve public data from ORCID (Open Researcher and Contributor ID) records via the ORCID public API. Fetches employment history, education, works (publications, datasets, preprints), funding, peer review activities, and other public information. Returns data as structured data.table objects for easy analysis and manipulation. Replaces the discontinued rorcid package with a modern, CRAN-compliant implementation.
Create R plots visualising ontological terms and the relationships between them with various graphical options - Greene et al. 2017 <doi:10.1093/bioinformatics/btw763>.
This package creates mock data for testing and package development for the Observational Medical Outcomes Partnership common data model. The package offers functions crafted with pipeline-friendly implementation, enabling users to effortlessly include only the necessary tables for their testing needs.
Ordination comprises several multivariate exploratory and explanatory techniques with theoretical foundations in geometric data analysis; see Podani (2000, ISBN:90-5782-067-6) for techniques and applications and Le Roux & Rouanet (2005) <doi:10.1007/1-4020-2236-0> for foundations. Greenacre (2010, ISBN:978-84-923846) shows how the most established of these, including principal components analysis, correspondence analysis, multidimensional scaling, factor analysis, and discriminant analysis, rely on eigen-decompositions or singular value decompositions of pre-processed numeric matrix data. These decompositions give rise to a set of shared coordinates along which the row and column elements can be measured. The overlay of their scatterplots on these axes, introduced by Gabriel (1971) <doi:10.1093/biomet/58.3.453>, is called a biplot. ordr provides inspection, extraction, manipulation, and visualization tools for several popular ordination classes supported by a set of recovery methods. It is inspired by and designed to integrate into Tidyverse workflows provided by Wickham et al (2019) <doi:10.21105/joss.01686>.
This package provides a building block for optimization algorithms based on a simplex. The optimsimplex package may be used in the following optimization methods: the simplex method of Spendley et al. (1962) <doi:10.1080/00401706.1962.10490033>, the method of Nelder and Mead (1965) <doi:10.1093/comjnl/7.4.308>, Box's algorithm for constrained optimization (1965) <doi:10.1093/comjnl/8.1.42>, the multi-dimensional search by Torczon (1989) <https://www.cs.wm.edu/~va/research/thesis.pdf>, etc...
Help and demo in Spanish of the orloca package. Ayuda y demo en espanol del paquete orloca. Objetos y metodos para manejar y resolver el problema de localizacion de suma minima, tambien conocido como problema de Fermat-Weber. El problema de localizacion de suma minima busca un punto tal que la suma ponderada de las distancias a los puntos de demanda se minimice. Vease "The Fermat-Weber location problem revisited" por Brimberg, Mathematical Programming, 1, pag. 71-76, 1995. <DOI: 10.1007/BF01592245>. Se usan algoritmos generales de optimizacion global para resolver el problema, junto con el metodo especifico Weiszfeld, vease "Sur le point pour lequel la Somme des distance de n points donnes est minimum", por Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pag. 355-386, 1937 o "On the point for which the sum of the distances to n given points is minimum", por E. Weiszfeld y F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009. <DOI:10.1007/s10479-008-0352-z>.
This package provides tools for easy exploration of the world ocean atlas of the US agency National Oceanic and Atmospheric Administration (NOAA). It includes functions to extract NetCDF data from the repository and code to visualize several physical and chemical parameters of the ocean. A Shiny app further allows interactive exploration of the data. The methods for data collecting and quality checks are described in several papers, which can be found here: <https://www.ncei.noaa.gov/products/world-ocean-atlas>.