Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Access and Analyze Official Development Assistance (ODA) data using the OECD API <https://gitlab.algobank.oecd.org/public-documentation/dotstat-migration/-/raw/main/OECD_Data_API_documentation.pdf>. ODA data includes sovereign-level aid data such as key aggregates (DAC1), geographical distributions (DAC2A), project-level data (CRS), and multilateral contributions (Multisystem).
The comprehensive knowledge of epigenetic modifications in plants, encompassing histone modifications in regulating gene expression, is not completely ingrained. It is noteworthy that histone deacetylation and histone H3 lysine 27 trimethylation (H3K27me3) play a role in repressing transcription in eukaryotes. In contrast, histone acetylation (H3K9ac) and H3K4me3 have been inevitably linked to the stimulation of gene expression, which significantly influences plant development and plays a role in plant responses to biotic and abiotic stresses. To our knowledge this the first multiclass classifier for predicting histone modification in plants. <doi:10.1186/s12864-019-5489-4>.
Predictive scores must be updated with care, because actions taken on the basis of existing risk scores causes bias in risk estimates from the updated score. A holdout set is a straightforward way to manage this problem: a proportion of the population is held-out from computation of the previous risk score. This package provides tools to estimate a size for this holdout set and associated errors. Comprehensive vignettes are included. Please see: Haidar-Wehbe S, Emerson SR, Aslett LJM, Liley J (2022) <doi:10.48550/arXiv.2202.06374> (to appear in Annals of Applied Statistics) for details of methods.
Streamlines the post-processing, summarization, and visualization of outbreaker2 output via a suite of helper functions. Facilitates tidy manipulation of posterior samples, integration with case metadata, generation of diagnostic plots and summary statistics.
Implementation of optimistic optimization methods for global optimization of deterministic or stochastic functions. The algorithms feature guarantees of the convergence to a global optimum. They require minimal assumptions on the (only local) smoothness, where the smoothness parameter does not need to be known. They are expected to be useful for the most difficult functions when we have no information on smoothness and the gradients are unknown or do not exist. Due to the weak assumptions, however, they can be mostly effective only in small dimensions, for example, for hyperparameter tuning.
Helper functions for coding object-oriented programming with a focus on R6. Includes functions for assertions and testing, looping, and re-usable design patterns including Abstract and Decorator classes.
Install and control Open Source Routing Machine ('OSRM') backend executables to prepare routing data and run/stop a local OSRM server. For computations with the running server use the osrm R package (<https://cran.r-project.org/package=osrm>).
Crawler for OJS pages and scraper for meta-data from articles. You can crawl OJS archives, issues, articles, galleys, and search results. You can scrape articles metadata from their head tag in html, or from Open Archives Initiative ('OAI') records. Most of these functions rely on OJS routing conventions (<https://docs.pkp.sfu.ca/dev/documentation/en/architecture-routes>).
Expands quoted language by recursively replacing any symbol that points to quoted language with the language it points to. The recursive process continues until only symbols that point to non-language objects remain. The resulting quoted language can then be evaluated normally. This differs from the traditional quote'/'eval pattern because it resolves intermediate language objects that would interfere with evaluation.
Defines thresholds for breaking data into a number of discrete levels, minimizing the (mean) squared error within all bins.
This package provides functions for optimal policy learning in socioeconomic applications helping users to learn the most effective policies based on data in order to maximize empirical welfare. Specifically, OPL allows to find "treatment assignment rules" that maximize the overall welfare, defined as the sum of the policy effects estimated over all the policy beneficiaries. Documentation about OPL is provided by several international articles via Athey et al (2021, <doi:10.3982/ECTA15732>), Kitagawa et al (2018, <doi:10.3982/ECTA13288>), Cerulli (2022, <doi:10.1080/13504851.2022.2032577>), the paper by Cerulli (2021, <doi:10.1080/13504851.2020.1820939>) and the book by Gareth et al (2013, <doi:10.1007/978-1-4614-7138-7>).
Ensemble functions for outlier/anomaly detection. There is a new ensemble method proposed using Item Response Theory. Existing outlier ensemble methods from Schubert et al (2012) <doi:10.1137/1.9781611972825.90>, Chiang et al (2017) <doi:10.1016/j.jal.2016.12.002> and Aggarwal and Sathe (2015) <doi:10.1145/2830544.2830549> are also included.
We introduce an R function one_two_sample() which can deal with one and two (normal) samples, Ying-Ying Zhang, Yi Wei (2012) <doi:10.2991/asshm-13.2013.29>. For one normal sample x, the function reports descriptive statistics, plot, interval estimation and test of hypothesis of x. For two normal samples x and y, the function reports descriptive statistics, plot, interval estimation and test of hypothesis of x and y, respectively. It also reports interval estimation and test of hypothesis of mu1-mu2 (the difference of the means of x and y) and sigma1^2 / sigma2^2 (the ratio of the variances of x and y), tests whether x and y are from the same population, finds the correlation coefficient of x and y if x and y have the same length.
Inspired by S-PLUS function objects.summary(), provides a function with the same name that returns data class, storage mode, mode, type, dimension, and size information for R objects in the specified environment. Various filtering and sorting options are also proposed.
Designed for performing impact analysis of opinions in a digital text document (DTD). The package allows a user to assess the extent to which a theme or subject within a document impacts the overall opinion expressed in the document. The package can be applied to a wide range of opinion-based DTD, including commentaries on social media platforms (such as Facebook', Twitter and Youtube'), online products reviews, and so on. The utility of opitools was originally demonstrated in Adepeju and Jimoh (2021) <doi:10.31235/osf.io/c32qh> in the assessment of COVID-19 impacts on neighbourhood policing using Twitter data. Further examples can be found in the vignette of the package.
I tend to repeat the same code chunks over and over again. At first, this was fine for me and I paid little attention to such redundancies. A little later, when I got tired of manually replacing Linux filepaths with the referring Windows versions, and vice versa, I started to stuff some very frequently used work-steps into functions and, even later, into a proper R package. And that's what this package is - a hodgepodge of various R functions meant to simplify (my) everyday-life coding work without, at the same time, being devoted to a particular scope of application.
This package provides functions to test/check/verify/investigate the ordering of vectors. The is_[strictly_]* family of functions test vectors for sorted', monotonic', increasing', decreasing order; is_constant and is_incremental test for the degree of ordering. `ordering` provides a numeric indication of ordering -2 (strictly decreasing) to 2 (strictly increasing).
Uses the outputs of a logistic regression model, from caret <https://CRAN.R-project.org/package=caret>, to build an odds plot. This allows for the rapid visualisation of odds plot ratios and works best with the outputs of CARET's GLM model class, by returning the final trained model.
Optimal scaling of a data vector, relative to a set of targets, is obtained through a least-squares transformation subject to appropriate measurement constraints. The targets are usually predicted values from a statistical model. If the data are nominal level, then the transformation must be identity-preserving. If the data are ordinal level, then the transformation must be monotonic. If the data are discrete, then tied data values must remain tied in the optimal transformation. If the data are continuous, then tied data values can be untied in the optimal transformation.
Supports the analysis of Oceanographic data, including ADCP measurements, measurements made with argo floats, CTD measurements, sectional data, sea-level time series, coastline and topographic data, etc. Provides specialized functions for calculating seawater properties such as potential temperature in either the UNESCO or TEOS-10 equation of state. Produces graphical displays that conform to the conventions of the Oceanographic literature. This package is discussed extensively by Kelley (2018) "Oceanographic Analysis with R" <doi:10.1007/978-1-4939-8844-0>.
When people make decisions, they may do so using a wide variety of decision rules. The package allows users to easily create obfuscation games to test the obfuscation hypothesis. It provides an easy to use interface and multiple options designed to vary the difficulty of the game and tailor it to the user's needs. For more detail: Chorus et al., 2021, Obfuscation maximization-based decision-making: Theory, methodology and first empirical evidence, Mathematical Social Sciences, 109, 28-44, <doi:10.1016/j.mathsocsci.2020.10.002>.
The Open University Learning Analytics Dataset (OULAD) is available from Kuzilek et al. (2017) <doi:10.1038/sdata.2017.171>. The ouladFormat package loads, cleans and formats the OULAD for data analysis (each row of the returned data set is an individual student). The packageâ s main function, combined_dataset(), allows the user to choose whether the returned data set includes assessment, demographics, virtual learning environment (VLE), or registration variables etc.
Estimates win ratio or Mann-Whitney parameter for two group comparisons using ordered composite endpoints with right censoring as described in Follmann, Fay, Hamasaki, and Evans (2020)<doi:10.1002/sim.7890>.
This package provides a method for the quantitative prediction using omics data. This package provides functions to construct the quantitative prediction model using omics data.