Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of a likelihood ratio test of differential onset of senescence between two groups. Given two groups with measures of age and of an individual trait likely to be subjected to senescence (e.g. body mass), OnAge provides an asymptotic p-value for the null hypothesis that senescence starts at the same age in both groups. The package implements the procedure used in Douhard et al. (2017) <doi:10.1111/oik.04421>.
Users can build a single shiny app for exploring population characterization, population-level causal effect estimation, and patient-level prediction results generated via the R analyses packages in HADES (see <https://ohdsi.github.io/Hades/>). Learn more about OhdsiShinyAppBuilder at <https://ohdsi.github.io/OhdsiShinyAppBuilder/>.
This package provides a wrapper for optim for nonlinear regression problems; see Nocedal J and Write S (2006, ISBN: 978-0387-30303-1). Performs ordinary least squares (OLS), iterative re-weighted least squares (IRWLS), and maximum likelihood (MLE). Also includes the robust outlier detection (ROUT) algorithm; see Motulsky, H and Brown, R (2006) <doi:10.1186/1471-2105-7-123>.
Machine learning estimator specifically optimized for predictive modeling of ordered non-numeric outcomes. ocf provides forest-based estimation of the conditional choice probabilities and the covariatesâ marginal effects. Under an "honesty" condition, the estimates are consistent and asymptotically normal and standard errors can be obtained by leveraging the weight-based representation of the random forest predictions. Please reference the use as Di Francesco (2025) <doi:10.1080/07474938.2024.2429596>.
Data sets for network analysis related to People Analytics. Contains various data sets from the book Handbook of Graphs and Networks in People Analytics by Keith McNulty (2021).
The classical and extended occupancy distributions occur in cases where balls are randomly allocated to bins. The PDF, CDF, quantile functions, generation of random variates, and calculating the first four central moments of the distributions are implemented as described in Oâ Neill (2019) <doi:10.1080/00031305.2019.1699445>.
Useful functions for one-sample (individual level data) Mendelian randomization and instrumental variable analyses. The package includes implementations of; the Sanderson and Windmeijer (2016) <doi:10.1016/j.jeconom.2015.06.004> conditional F-statistic, the multiplicative structural mean model Hernán and Robins (2006) <doi:10.1097/01.ede.0000222409.00878.37>, and two-stage predictor substitution and two-stage residual inclusion estimators explained by Terza et al. (2008) <doi:10.1016/j.jhealeco.2007.09.009>.
Design and analysis of confirmatory adaptive clinical trials using the optimal conditional error framework according to Brannath and Bauer (2004) <doi:10.1111/j.0006-341X.2004.00221.x>. An extension to the optimal conditional error function using interim estimates as described in Brannath and Dreher (2024) <doi:10.48550/arXiv.2402.00814> and functions to ensure that the resulting conditional error function is non-increasing are also available.
Bayesian reconstruction of disease outbreaks using epidemiological and genetic information. Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C and Ferguson N. 2014. <doi:10.1371/journal.pcbi.1003457>. Campbell, F, Cori A, Ferguson N, Jombart T. 2019. <doi:10.1371/journal.pcbi.1006930>.
This package provides functions for estimating the overlapping area of two or more kernel density estimations from empirical data.
In bulk epigenome/transcriptome experiments, molecular expression is measured in a tissue, which is a mixture of multiple types of cells. This package tests association of a disease/phenotype with a molecular marker for each cell type. The proportion of cell types in each sample needs to be given as input. The package is applicable to epigenome-wide association study (EWAS) and differential gene expression analysis. Takeuchi and Kato (submitted) "omicwas: cell-type-specific epigenome-wide and transcriptome association study".
This package provides a client that grants access to the power of the ohsome API from R. It lets you analyze the rich data source of the OpenStreetMap (OSM) history. You can retrieve the geometry of OSM data at specific points in time, and you can get aggregated statistics on the evolution of OSM elements and specify your own temporal, spatial and/or thematic filters.
Trains per-horizon probabilistic ensembles from a univariate time series. It supports rpart', glmnet', and kNN engines with flexible residual distributions and heteroscedastic scale models, weighting variants by calibration-aware scores. A Gaussian/t copula couples the marginals to simulate joint forecast paths, returning quantiles, means, and step increments across horizons.
This package implements the One Rule (OneR) Machine Learning classification algorithm (Holte, R.C. (1993) <doi:10.1023/A:1022631118932>) with enhancements for sophisticated handling of numeric data and missing values together with extensive diagnostic functions. It is useful as a baseline for machine learning models and the rules are often helpful heuristics.
This package provides tools for converting Open-Source Tools for Training Resources (OTTR) courses into Leanpub or Coursera courses. ottrpal is for use with the OTTR Template repository to create courses.
This package provides functions to calculate the out-of-bag learning curve for random forests for any measure that is available in the mlr package. Supported random forest packages are randomForest and ranger and trained models of these packages with the train function of mlr'. The main function is OOBCurve() that calculates the out-of-bag curve depending on the number of trees. With the OOBCurvePars() function out-of-bag curves can also be calculated for mtry', sample.fraction and min.node.size for the ranger package.
This package provides tools to assist in safely applying user generated objective and derivative function to optimization programs. These are primarily function minimization methods with at most bounds and masks on the parameters. Provides a way to check the basic computation of objective functions that the user provides, along with proposed gradient and Hessian functions, as well as to wrap such functions to avoid failures when inadmissible parameters are provided. Check bounds and masks. Check scaling or optimality conditions. Perform an axial search to seek lower points on the objective function surface. Includes forward, central and backward gradient approximation codes.
This package provides functions to test/check/verify/investigate the ordering of vectors. The is_[strictly_]* family of functions test vectors for sorted', monotonic', increasing', decreasing order; is_constant and is_incremental test for the degree of ordering. `ordering` provides a numeric indication of ordering -2 (strictly decreasing) to 2 (strictly increasing).
This package provides functions to access and download data from the Open Case Studies <https://www.opencasestudies.org/> repositories on GitHub <https://github.com/opencasestudies>. Different functions enable users to grab the data they need at different sections in the case study, as well as download the whole case study repository. All the user needs to do is input the name of the case study being worked on. The package relies on the httr::GET() function to access files through the GitHub API. The functions usethis::use_zip() and usethis::create_from_github() are used to clone and/or download the case study repositories. To cite an individual case study, please see the respective README file at <https://github.com/opencasestudies/>. <https://github.com/opencasestudies/ocs-bp-rural-and-urban-obesity> <https://github.com/opencasestudies/ocs-bp-air-pollution> <https://github.com/opencasestudies/ocs-bp-vaping-case-study> <https://github.com/opencasestudies/ocs-bp-opioid-rural-urban> <https://github.com/opencasestudies/ocs-bp-RTC-wrangling> <https://github.com/opencasestudies/ocs-bp-RTC-analysis> <https://github.com/opencasestudies/ocs-bp-youth-disconnection> <https://github.com/opencasestudies/ocs-bp-youth-mental-health> <https://github.com/opencasestudies/ocs-bp-school-shootings-dashboard> <https://github.com/opencasestudies/ocs-bp-co2-emissions> <https://github.com/opencasestudies/ocs-bp-diet>.
This package provides functions for the design process of survey sampling, with specific tools for multi-wave and multi-phase designs. Perform optimum allocation using Neyman (1934) <doi:10.2307/2342192> or Wright (2012) <doi:10.1080/00031305.2012.733679> allocation, split strata based on quantiles or values of known variables, randomly select samples from strata, allocate sampling waves iteratively, and organize a complex survey design. Also includes a Shiny application for observing the effects of different strata splits. A paper on this package was published in the Journal of Statistical Software <doi:10.18637/jss.v114.i10>.
This package provides a collection of general-purpose helper functions that I (and maybe others) find useful when developing data science software. Includes tools for simulation, data transformation, input validation, and more.
Utilizes the Black-Scholes-Merton option pricing model to calculate key option analytics and perform graphical analysis of various option strategies. Provides functions to calculate the option premium and option greeks of European-style options.
Outlier detection method that flags suspicious values within observations, constrasting them against the normal values in a user-readable format, potentially describing conditions within the data that make a given outlier more rare. Full procedure is described in Cortes (2020) <doi:10.48550/arXiv.2001.00636>. Loosely based on the GritBot <https://www.rulequest.com/gritbot-info.html> software.
Automated reporting in Word and PowerPoint can require customization for each organizational template. This package works around this by adding standard reporting functions and an abstraction layer to facilitate automated reporting workflows that can be replicated across different organizational templates.