Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The OLStrajr package provides comprehensive functions for ordinary least squares (OLS) trajectory analysis and case-by-case OLS regression as outlined in Carrig, Wirth, and Curran (2004) <doi:10.1207/S15328007SEM1101_9> and Rogosa and Saner (1995) <doi:10.3102/10769986020002149>. It encompasses two primary functions, OLStraj() and cbc_lm(). The OLStraj() function simplifies the estimation of individual growth curves over time via OLS regression, with options for visualizing both group-level and individual-level growth trajectories and support for linear and quadratic models. The cbc_lm() function facilitates case-by-case OLS estimates and provides unbiased mean population intercept and slope estimators by averaging OLS intercepts and slopes across cases. It further offers standard error calculations across bootstrap replicates and computation of 95% confidence intervals based on empirical distributions from the resampling processes.
Providing mean partition for ensemble clustering by optimal transport alignment(OTA), uncertainty measures for both partition-wise and cluster-wise assessment and multiple visualization functions to show uncertainty, for instance, membership heat map and plot of covering point set. A partition refers to an overall clustering result. Jia Li, Beomseok Seo, and Lin Lin (2019) <doi:10.1002/sam.11418>. Lixiang Zhang, Lin Lin, and Jia Li (2020) <doi:10.1093/bioinformatics/btaa165>.
This package provides a single function options.ifunset(...) is contained herewith, which allows the user to set a global option ONLY if it is not already set. By this token, for package maintainers this function can be used in preference to the standard options(...) function, making provision for THEIR end user to place options(...) directives within their .Rprofile file, which will not be overridden at the point when a package is loaded.
Automated reporting in Word and PowerPoint can require customization for each organizational template. This package works around this by adding standard reporting functions and an abstraction layer to facilitate automated reporting workflows that can be replicated across different organizational templates.
Setup and connect to OpenTripPlanner (OTP) <http://www.opentripplanner.org/>. OTP is an open source platform for multi-modal and multi-agency journey planning written in Java'. The package allows you to manage a local version or connect to remote OTP server to find walking, cycling, driving, or transit routes. This package has been peer-reviewed by rOpenSci (v. 0.2.0.0).
This package provides a suite of tools for the comprehensive visualization of multi-omics data, including genomics, transcriptomics, and proteomics. Offers user-friendly functions to generate publication-quality plots, thereby facilitating the exploration and interpretation of complex biological datasets. Supports seamless integration with popular R visualization frameworks and is well-suited for both exploratory data analysis and the presentation of final results. Key formats and methods are presented in Huang, S., et al. (2024) "The Born in Guangzhou Cohort Study enables generational genetic discoveries" <doi:10.1038/s41586-023-06988-4>.
The online principal component method can process the online data set. The philosophy of the package is described in Guo G. (2018) <doi:10.1080/10485252.2018.1531130>.
Tests the observed overlapping polygon area in a collection of polygons against a null model of random rotation, as explained in De la Cruz et al. (2017) <doi:10.13140/RG.2.2.12825.72801>.
Construct and evaluate directed tree structures that model the process of occurrence of genetic alterations during carcinogenesis as described in Szabo, A. and Boucher, K (2002) <doi:10.1016/S0025-5564(02)00086-X>.
Advanced forecasting algorithms for long-term energy demand at the national or regional level. The methodology is based on Grandón et al. (2024) <doi:10.1016/j.apenergy.2023.122249>; Zimmermann & Ziel (2024) <doi:10.1016/j.apenergy.2025.125444>. Real-time data, including power demand, weather conditions, and macroeconomic indicators, are provided through automated API integration with various institutions. The modular approach maintains transparency on the various model selection processes and encompasses the ability to be adapted to individual needs. oRaklE tries to help facilitating robust decision-making in energy management and planning.
Combine the air quality data analysis methods of openair with the JavaScript Leaflet (<https://leafletjs.com/>) library. Functionality includes plotting site maps, "directional analysis" figures such as polar plots, and air mass trajectories.
Provide functionality for cancer subtyping using nearest centroids or machine learning methods based on TCGA data.
Optimal k Nearest Neighbours Ensemble is an ensemble of base k nearest neighbour models each constructed on a bootstrap sample with a random subset of features. k closest observations are identified for a test point "x" (say), in each base k nearest neighbour model to fit a stepwise regression to predict the output value of "x". The final predicted value of "x" is the mean of estimates given by all the models. The implemented model takes training and test datasets and trains the model on training data to predict the test data. Ali, A., Hamraz, M., Kumam, P., Khan, D.M., Khalil, U., Sulaiman, M. and Khan, Z. (2020) <DOI:10.1109/ACCESS.2020.3010099>.
This package implements a tree-based method specifically designed for personalized medicine applications. By using genomic and mutational data, ODT efficiently identifies optimal drug recommendations tailored to individual patient profiles. The ODT algorithm constructs decision trees that bifurcate at each node, selecting the most relevant markers (discrete or continuous) and corresponding treatments, thus ensuring that recommendations are both personalized and statistically robust. This iterative approach enhances therapeutic decision-making by refining treatment suggestions until a predefined group size is achieved. Moreover, the simplicity and interpretability of the resulting trees make the method accessible to healthcare professionals. Includes functions for training the decision tree, making predictions on new samples or patients, and visualizing the resulting tree. For detailed insights into the methodology, please refer to Gimeno et al. (2023) <doi:10.1093/bib/bbad200>.
Build SVG components using element-based functions. With an svg object, we can modify its graphical elements with a suite of transform functions.
This package provides functions for estimating the overlapping area of two or more kernel density estimations from empirical data.
Apache OpenNLP jars and basic English language models.
Identifies the optimal transformation of a surrogate marker and estimates the proportion of treatment explained (PTE) by the optimally-transformed surrogate at an earlier time point when the primary outcome of interest is a censored time-to-event outcome; details are described in Wang et al (2021) <doi:10.1002/sim.9185>.
Implementation of a likelihood ratio test of differential onset of senescence between two groups. Given two groups with measures of age and of an individual trait likely to be subjected to senescence (e.g. body mass), OnAge provides an asymptotic p-value for the null hypothesis that senescence starts at the same age in both groups. The package implements the procedure used in Douhard et al. (2017) <doi:10.1111/oik.04421>.
This package provides new tools for analyzing discrete trait data integrating bio-ontologies and phylogenetics. It expands on the previous work of Tarasov et al. (2019) <doi:10.1093/isd/ixz009>. The PARAMO pipeline allows to reconstruct ancestral phenomes treating groups of morphological traits as a single complex character. The pipeline incorporates knowledge from ontologies during the amalgamation of individual character stochastic maps. Here we expand the current PARAMO functionality by adding new statistical methods for inferring evolutionary phenome dynamics using non-homogeneous Poisson process (NHPP). The new functionalities include: (1) reconstruction of evolutionary rate shifts of phenomes across lineages and time; (2) reconstruction of morphospace dynamics through time; and (3) estimation of rates of phenome evolution at different levels of anatomical hierarchy (e.g., entire body or specific regions only). The package also includes user-friendly tools for visualizing evolutionary rates of different anatomical regions using vector images of the organisms of interest.
Fits ordinal regression models with elastic net penalty. Supported model families include cumulative probability, stopping ratio, continuation ratio, and adjacent category. These families are a subset of vector glm's which belong to a model class we call the elementwise link multinomial-ordinal (ELMO) class. Each family in this class links a vector of covariates to a vector of class probabilities. Each of these families has a parallel form, which is appropriate for ordinal response data, as well as a nonparallel form that is appropriate for an unordered categorical response, or as a more flexible model for ordinal data. The parallel model has a single set of coefficients, whereas the nonparallel model has a set of coefficients for each response category except the baseline category. It is also possible to fit a model with both parallel and nonparallel terms, which we call the semi-parallel model. The semi-parallel model has the flexibility of the nonparallel model, but the elastic net penalty shrinks it toward the parallel model. For details, refer to Wurm, Hanlon, and Rathouz (2021) <doi:10.18637/jss.v099.i06>.
Allows you to easily execute expensive compute operations only once, and save the resulting object to disk.
This package contains data from the May 2021 Occupational Employment and Wage Statistics data release from the U.S. Bureau of Labor Statistics. The dataset covers employment and wages across occupations, industries, states, and at the national level. Metropolitan data is not included.
Programs for detecting and cleaning outliers in single time series and in time series from homogeneous and heterogeneous databases using an Orthogonal Greedy Algorithm (OGA) for saturated linear regression models. The programs implement the procedures presented in the paper entitled "Efficient Outlier Detection for Large Time Series Databases" by Pedro Galeano, Daniel Peña and Ruey S. Tsay (2025), working paper, Universidad Carlos III de Madrid. Version 1.1.1 contains some improvements in parallelization with respect to version 1.0.1.