Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a penalized regression framework that can simultaneously estimate the optimal treatment strategy and identify important variables. Appropriate for either censored or uncensored continuous response.
This package provides a visualization tool for multivariate data. This package maintains the original functionality of a radar chart and avoids potential misuse of its connected regions, with newly added features to better assist multi-criteria decision-making.
Potential outliers are identified for all combinations of a dataset's variables. O3 plots are described in Unwin(2019) <doi:10.1080/10618600.2019.1575226>. The available methods are HDoutliers() from the package HDoutliers', FastPCS() from the package FastPCS', mvBACON() from robustX', adjOutlyingness() from robustbase', DectectDeviatingCells() from cellWise', covMcd() from robustbase'.
Objects and methods to handle and solve the min-sum location problem, also known as Fermat-Weber problem. The min-sum location problem search for a point such that the weighted sum of the distances to the demand points are minimized. See "The Fermat-Weber location problem revisited" by Brimberg, Mathematical Programming, 1, pg. 71-76, 1995. <DOI:10.1007/BF01592245>. General global optimization algorithms are used to solve the problem, along with the adhoc Weiszfeld method, see "Sur le point pour lequel la Somme des distances de n points donnes est minimum", by Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pg. 355-386, 1937 or "On the point for which the sum of the distances to n given points is minimum", by E. Weiszfeld and F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009. <DOI:10.1007/s10479-008-0352-z>.
Microarray probe ID is not convenient for further enrichment analysis and target gene selection. The package is created for the rice microarray probe ID conversion. This package can convert microarray probe ID from GPL6864 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6864>, GPL8852 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL8852>, and GPL2025 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2025> platforms to RAP-DB ID. RAP-DB "The Rice Annotation Project Database" <https://rapdb.dna.affrc.go.jp> is a well-known database for rice Oryza sativa, and the gene ID in this database is widely used in many areas related to rice research. For multiple probes representing a single gene, This package can merge them by taking the mean, max, or min value of these probes. Or we can keep multiple probes by appending sequence numbers to duplicate the RAP-DB ID.
This package provides a utility to quickly obtain clean and tidy sports odds from The Odds API <https://the-odds-api.com>.
Conversion between the most common odds types for sports betting. Hong Kong odds, US odds, Decimal odds, Indonesian odds, Malaysian odds, and raw Probability are covered in this package.
Maps of Australian coastline and administrative regions. Data can be drawn or accessed directly as simple features objects. Includes simple functions for country or state maps of Australia and in-built data sets of administrative regions from the Australian Bureau of Statistics <https://www.abs.gov.au/>. Layers include electoral divisions and local government areas, simplified from the original sources but with sufficient detail to allow mapping of a local municipality.
Seamlessly build and manipulate graph structures, leveraging its high-performance methods for filtering, joining, and mutating data. Ensures that mutations and changes to the graph are performed in place, streamlining your workflow for optimal productivity.
The aim of od is to provide tools and example datasets for working with origin-destination ('OD') datasets of the type used to describe aggregate urban mobility patterns (Carey et al. 1981) <doi:10.1287/trsc.15.1.32>. The package builds on functions for working with OD data in the package stplanr', (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053> with a focus on computational efficiency and support for the sf class system (Pebesma 2018) <doi:10.32614/RJ-2018-009>. With few dependencies and a simple class system based on data frames, the package is intended to facilitate efficient analysis of OD datasets and to provide a place for developing new functions. The package enables the creation and analysis of geographic entities representing large scale mobility patterns, from daily travel between zones in cities to migration between countries.
Subsampling based variable selection for low dimensional generalized linear models. The methods repeatedly subsample the data minimizing an information criterion (AIC/BIC) over a sequence of nested models for each subsample. Marinela Capanu, Mihai Giurcanu, Colin B Begg, Mithat Gonen, Subsampling based variable selection for generalized linear models.
Allows performing forwards prediction for the General Unified Threshold model of Survival using compiled ode code. This package was created to avoid dependency with the morse package that requires the installation of JAGS'. This package is based on functions from the morse package v3.3.1: Virgile Baudrot, Sandrine Charles, Marie Laure Delignette-Muller, Wandrille Duchemin, Benoit Goussen, Nils Kehrein, Guillaume Kon-Kam-King, Christelle Lopes, Philippe Ruiz, Alexander Singer and Philippe Veber (2021) <https://CRAN.R-project.org/package=morse>.
Use optimization to estimate weights that balance covariates for binary, multi-category, continuous, and multivariate treatments in the spirit of Zubizarreta (2015) <doi:10.1080/01621459.2015.1023805>. The degree of balance can be specified for each covariate. In addition, sampling weights can be estimated that allow a sample to generalize to a population specified with given target moments of covariates.
An integrated R interface to the Overture API (<https://docs.overturemaps.org/>). Allows R users to return Overture data as dbplyr data frames or materialized sf spatial data frames.
Helper functions for Org files (<https://orgmode.org/>): a generic function toOrg for transforming R objects into Org markup (most useful for data frames; there are also methods for Dates/POSIXt) and a function to read Org tables into data frames.
Intended to assist in the choice of the sampling strategy to implement in a survey.
The Sequence of Physical Processes (SPP) framework is a way of interpreting the transient data derived from oscillatory rheological tests. It is designed to allow both the linear and non-linear deformation regimes to be understood within a single unified framework. This code provides a convenient way to determine the SPP framework metrics for a given sample of oscillatory data. It will produce a text file containing the SPP metrics, which the user can then plot using their software of choice. It can also produce a second text file with additional derived data (components of tangent, normal, and binormal vectors), as well as pre-plotted figures if so desired. It is the R version of the Package SPP by Simon Rogers Group for Soft Matter (Simon A. Rogers, Brian M. Erwin, Dimitris Vlassopoulos, Michel Cloitre (2011) <doi:10.1122/1.3544591>).
Fits two-dimensional data by means of orthogonal nonlinear least-squares using Levenberg-Marquardt minimization and provides functionality for fit diagnostics and plotting. Delivers the same results as the ODRPACK Fortran implementation described in Boggs et al. (1989) <doi:10.1145/76909.76913>, but is implemented in pure R.
This package performs the O2PLS data integration method for two datasets, yielding joint and data-specific parts for each dataset. The algorithm automatically switches to a memory-efficient approach to fit O2PLS to high dimensional data. It provides a rigorous and a faster alternative cross-validation method to select the number of components, as well as functions to report proportions of explained variation and to construct plots of the results. See the software article by el Bouhaddani et al (2018) <doi:10.1186/s12859-018-2371-3>, and Trygg and Wold (2003) <doi:10.1002/cem.775>. It also performs Sparse Group (Penalized) O2PLS, see Gu et al (2020) <doi:10.1186/s12859-021-03958-3> and cross-validation for the degree of sparsity.
Implementation of a procedure for generating samples from a mixed distribution of ordinal and normal random variables with a pre-specified correlation matrix and marginal distributions. The details of the method are explained in Demirtas et al. (2015) <DOI:10.1080/10543406.2014.920868>.
This package provides analyse, interpret and understand noise pollution data. Data are typically regular time series measured with sound meter. The package is partially described in Fogola, Grasso, Masera and Scordino (2023, <DOI:10.61782/fa.2023.0063>).
An assortment of helper functions for managing data (e.g., rotating values in matrices by a user-defined angle, switching from row- to column-indexing), dates (e.g., intuiting year from messy date strings), handling missing values (e.g., removing elements/rows across multiple vectors or matrices if any have an NA), text (e.g., flushing reports to the console in real-time); and combining data frames with different schema (copying, filling, or concatenating columns or applying functions before combining).
Set of tools to generate samples of k-th order statistics and others quantities of interest from new families of distributions. The main references for this package are: C. Kleiber and S. Kotz (2003) Statistical size distributions in economics and actuarial sciences; Gentle, J. (2009), Computational Statistics, Springer-Verlag; Naradajah, S. and Rocha, R. (2016), <DOI:10.18637/jss.v069.i10> and Stasinopoulos, M. and Rigby, R. (2015), <DOI:10.1111/j.1467-9876.2005.00510.x>. The families of distributions are: Benini distributions, Burr distributions, Dagum distributions, Feller-Pareto distributions, Generalized Pareto distributions, Inverse Pareto distributions, The Inverse Paralogistic distributions, Marshall-Olkin G distributions, exponentiated G distributions, beta G distributions, gamma G distributions, Kumaraswamy G distributions, generalized beta G distributions, beta extended G distributions, gamma G distributions, gamma uniform G distributions, beta exponential G distributions, Weibull G distributions, log gamma G I distributions, log gamma G II distributions, exponentiated generalized G distributions, exponentiated Kumaraswamy G distributions, geometric exponential Poisson G distributions, truncated-exponential skew-symmetric G distributions, modified beta G distributions, exponentiated exponential Poisson G distributions, Poisson-inverse gaussian distributions, Skew normal type 1 distributions, Skew student t distributions, Singh-Maddala distributions, Sinh-Arcsinh distributions, Sichel distributions, Zero inflated Poisson distributions.
This package provides a tool for visualizing numerical data (e.g., gene expression, protein abundance) on predefined anatomical maps of human/mouse organs and subcellular organelles. It supports customization of color schemes, filtering by organ systems (for organisms) or organelle types, and generation of optional bar charts for quantitative comparison. The package integrates coordinate data for organs and organelles to plot anatomical/subcellular contours, mapping data values to specific structures for intuitive visualization of biological data distribution.The underlying method was described in the preprint by Zhou et al. (2022) <doi:10.1101/2022.09.07.506938>.