Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Machine learning estimator specifically optimized for predictive modeling of ordered non-numeric outcomes. ocf provides forest-based estimation of the conditional choice probabilities and the covariatesâ marginal effects. Under an "honesty" condition, the estimates are consistent and asymptotically normal and standard errors can be obtained by leveraging the weight-based representation of the random forest predictions. Please reference the use as Di Francesco (2025) <doi:10.1080/07474938.2024.2429596>.
An R wrapper for the OneMap.Sg API <https://www.onemap.gov.sg/docs/>. Functions help users query data from the API and return raw JSON data in "tidy" formats. Support is also available for users to retrieve data from multiple API calls and integrate results into single dataframes, without needing to clean and merge the data themselves. This package is best suited for users who would like to perform analyses with Singapore's spatial data without having to perform excessive data cleaning.
Two-part system for first collecting then managing direct observation data, as described by Hibbing PR, Ellingson LD, Dixon PM, & Welk GJ (2018) <doi:10.1249/MSS.0000000000001486>.
Medication adherence, defined as medication-taking behavior that aligns with the agreed-upon treatment protocol, is critical for realizing the benefits of prescription medications. Medication adherence can be assessed using electronic adherence monitoring devices (EAMDs), pill bottles or boxes that contain a computer chip that records the date and time of each opening (or â actuationâ ). Before researchers can use EAMD data, they must apply a series of decision rules to transform actuation data into adherence data. The purpose of this R package ('oncmap') is to transform EAMD actuations in the form of a raw .csv file, information about the patient, regimen, and non-monitored periods into two daily adherence values -- Dose Taken and Correct Dose Taken.
This package implements ordered beta regression models, which are for modeling continuous variables with upper and lower bounds, such as survey sliders, dose-response relationships and indexes. For more information, see Kubinec (2023) <doi:10.31235/osf.io/2sx6y>. The package is a front-end to the R package brms', which facilitates a range of regression specifications, including hierarchical, dynamic and multivariate modeling.
This package provides the setup and calculations needed to run a likelihood-based continual reassessment method (CRM) dose finding trial and performs simulations to assess design performance under various scenarios. 3 dose finding designs are included in this package: ordinal proportional odds model (POM) CRM, ordinal continuation ratio (CR) model CRM, and the binary 2-parameter logistic model CRM. These functions allow customization of design characteristics to vary sample size, cohort sizes, target dose-limiting toxicity (DLT) rates, discrete or continuous dose levels, combining ordinal grades 0 and 1 into one category, and incorporate safety and/or stopping rules. For POM and CR model designs, ordinal toxicity grades are specified by common terminology criteria for adverse events (CTCAE) version 4.0. Function pseudodata creates the necessary starting models for these 3 designs, and function nextdose estimates the next dose to test in a cohort of patients for a target DLT rate. We also provide the function crmsimulations to assess the performance of these 3 dose finding designs under various scenarios.
Create regression tables for publication. Currently supports lm', glm', survreg', and ivreg outputs.
It makes an objective Bayesian analysis of the spatial regression model using both the normal (NSR) and student-T (TSR) distributions. The functions provided give prior and posterior objective densities and allow default Bayesian estimation of the model regression parameters. Details can be found in Ordonez et al. (2020) <arXiv:2004.04341>.
Evaluates the Owen Q-function for an integer value of the degrees of freedom, by applying Owen's algorithm (1965) <doi:10.1093/biomet/52.3-4.437>. It is useful for the calculation of the power of equivalence tests.
Computes optimal cutpoints for diagnostic tests or continuous markers. Various approaches for selecting optimal cutoffs have been implemented, including methods based on cost-benefit analysis and diagnostic test accuracy measures (Sensitivity/Specificity, Predictive Values and Diagnostic Likelihood Ratios). Numerical and graphical output for all methods is easily obtained.
In bulk epigenome/transcriptome experiments, molecular expression is measured in a tissue, which is a mixture of multiple types of cells. This package tests association of a disease/phenotype with a molecular marker for each cell type. The proportion of cell types in each sample needs to be given as input. The package is applicable to epigenome-wide association study (EWAS) and differential gene expression analysis. Takeuchi and Kato (submitted) "omicwas: cell-type-specific epigenome-wide and transcriptome association study".
Several function related to Experimental Design are implemented here, see "Optimal Experimental Design with R" by Rasch D. et. al (ISBN 9781439816974).
This package provides a set of tools to extract bibliographic content from OpenAlex database using API <https://docs.openalex.org>.
This package implements orbit counting using a fast combinatorial approach. Counts orbits of nodes and edges from edge matrix or data frame, or a graph object from the graph package.
This package provides a collection of functions to facilitate analysis of proteomic data from Olink, primarily NPX data that has been exported from Olink Software. The functions also work on QUANT data from Olink by log- transforming the QUANT data. The functions are focused on reading data, facilitating data wrangling and quality control analysis, performing statistical analysis and generating figures to visualize the results of the statistical analysis. The goal of this package is to help users extract biological insights from proteomic data run on the Olink platform.
The restricted optimal design method is implemented to optimally allocate a set of items that require calibration to a group of examinees. The optimization process is based on the method described in detail by Ul Hassan and Miller in their works published in (2019) <doi:10.1177/0146621618824854> and (2021) <doi:10.1016/j.csda.2021.107177>. To use the method, preliminary item characteristics must be provided as input. These characteristics can either be expert guesses or based on previous calibration with a small number of examinees. The item characteristics should be described in the form of parameters for an Item Response Theory (IRT) model. These models can include the Rasch model, the 2-parameter logistic model, the 3-parameter logistic model, or a mixture of these models. The output consists of a set of rules for each item that determine which examinees should be assigned to each item. The efficiency or gain achieved through the optimal design is quantified by comparing it to a random allocation. This comparison allows for an assessment of how much improvement or advantage is gained by using the optimal design approach. This work was supported by the Swedish Research Council (Vetenskapsrådet) Grant 2019-02706.
Non-spatial and spatial open-population capture-recapture analysis.
An RStudio addin to assist with removing objects from the global environment. Features include removing objects according to name patterns and object type. During the course of an analysis, temporary objects are often created and this tool assists with removing them quickly. This can be useful when memory management within R is important.
In biomedical studies, researchers are often interested in assessing the association between one or more ordinal explanatory variables and an outcome variable, at the same time adjusting for covariates of any type. The outcome variable may be continuous, binary, or represent censored survival times. In the absence of a precise knowledge of the response function, using monotonicity constraints on the ordinal variables improves efficiency in estimating parameters, especially when sample sizes are small. This package implements an active set algorithm that efficiently computes such estimators.
This package provides simple crosstab output with optional statistics (e.g., Goodman-Kruskal Gamma, Somers d, and Kendall's tau-b) as well as two-way and one-way tables. The package is used within the statistics component of the Masters of Science (MSc) in Social Science of the Internet at the Oxford Internet Institute (OII), University of Oxford, but the functions should be useful for general data analysis and especially for analysis of categorical and ordinal data.
Facilitates the gathering of biodiversity occurrence data from disparate sources. Metadata is managed throughout the process to facilitate reporting and enhanced ability to repeat analyses.
Shiny UI to identify cliques of related constructs in repertory grid data. See Burr, King, & Heckmann (2020) <doi:10.1080/14780887.2020.1794088> for a description of the interpretive clustering (IC) method.
Data integration Web application for biobanks by OBiBa'. Opal is the core database application for biobanks. Participant data, once collected from any data source, must be integrated and stored in a central data repository under a uniform model. Opal is such a central repository. It can import, process, validate, query, analyze, report, and export data. Opal is typically used in a research center to analyze the data acquired at assessment centres. Its ultimate purpose is to achieve seamless data-sharing among biobanks. This Opal client allows to interact with Opal web services and to perform operations on the R server side. DataSHIELD administration tools are also provided.
This package provides a collection of R functions that are widely used by the Petersen Lab. Included are functions for various purposes, including evaluating the accuracy of judgments and predictions, performing scoring of assessments, generating correlation matrices, conversion of data between various types, data management, psychometric evaluation, extensions related to latent variable modeling, various plotting capabilities, and other miscellaneous useful functions. By making the package available, we hope to make our methods reproducible and replicable by others and to help others perform their data processing and analysis methods more easily and efficiently. The codebase is provided in Petersen (2025) <doi:10.5281/zenodo.7602890> and on CRAN': <doi: 10.32614/CRAN.package.petersenlab>. The package is described in "Principles of Psychological Assessment: With Applied Examples in R" (Petersen, 2024, 2025a) <doi:10.1201/9781003357421>, <doi:10.25820/work.007199>, <doi:10.5281/zenodo.6466589> and in "Fantasy Football Analytics: Statistics, Prediction, and Empiricism Using R" (Petersen, 2025b).