Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a utility to quickly obtain clean and tidy sports odds from The Odds API <https://the-odds-api.com>.
Implement a new stopping rule to detect anomaly in the covariance structure of high-dimensional online data. The detection procedure can be applied to Gaussian or non-Gaussian data with a large number of components. Moreover, it allows both spatial and temporal dependence in data. The dependence can be estimated by a data-driven procedure. The level of threshold in the stopping rule can be determined at a pre-selected average run length. More detail can be seen in Li, L. and Li, J. (2020) "Online Change-Point Detection in High-Dimensional Covariance Structure with Application to Dynamic Networks." <arXiv:1911.07762>.
Shiny Application to visualize Olympic Data. From 1896 to 2016. Even Winter Olympics events are included. Data is from Kaggle at <https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results>.
OD-means is a hierarchical adaptive k-means algorithm based on origin-destination pairs. In the first layer of the hierarchy, the clusters are separated automatically based on the variation of the within-cluster distance of each cluster until convergence. The second layer of the hierarchy corresponds to the sub clustering process of small clusters based on the distance between the origin and destination of each cluster.
Estimate location-shift models or rating-scale models accounting for response styles (RSRS) for the regression analysis of ordinal responses.
This package provides an end-to-end workflow for integrative analysis of two omics layers using sparse canonical correlation analysis (sCCA), including sample alignment, feature selection, network edge construction, and visualization of gene-metabolite relationships. The underlying methods are based on penalized matrix decomposition and sparse CCA (Witten, Tibshirani and Hastie (2009) <doi:10.1093/biostatistics/kxp008>), with design principles inspired by multivariate integrative frameworks such as mixOmics (Rohart et al. (2017) <doi:10.1371/journal.pcbi.1005752>).
Wrapper around the Open Source Routing Machine (OSRM) API <http://project-osrm.org/>. osrmr works with API versions 4 and 5 and can handle servers that run locally as well as the OSRM webserver.
Inference using a class of Hidden Markov models (HMMs) called oHMMed'(ordered HMM with emission densities <doi:10.1186/s12859-024-05751-4>): The oHMMed algorithms identify the number of comparably homogeneous regions within observed sequences with autocorrelation patterns. These are modelled as discrete hidden states; the observed data points are then realisations of continuous probability distributions with state-specific means that enable ordering of these distributions. The observed sequence is labelled according to the hidden states, permitting only neighbouring states that are also neighbours within the ordering of their associated distributions. The parameters that characterise these state-specific distributions are then inferred. Relevant for application to genomic sequences, time series, or any other sequence data with serial autocorrelation.
This package provides a penalized regression framework that can simultaneously estimate the optimal treatment strategy and identify important variables. Appropriate for either censored or uncensored continuous response.
Clinical reports generated by Oncomine Reporter software contain critical data in unstructured PDF format, making manual extraction time-consuming and error-prone. ORscraper provides a coherent suite of functions to automate this process, allowing researchers to parse reports, identify key biomarkers, extract genetic variant tables, and filter results. It also integrates with the NCBI ClinVar API <https://www.ncbi.nlm.nih.gov/clinvar/> to enrich extracted data.
Utilizes the Black-Scholes-Merton option pricing model to calculate key option analytics and perform graphical analysis of various option strategies. Provides functions to calculate the option premium and option greeks of European-style options.
This package provides a function to detect and trim outliers in Gaussian mixture model-based clustering using methods described in Clark and McNicholas (2024) <doi:10.1007/s00357-024-09473-3>.
This package implements the One Rule (OneR) Machine Learning classification algorithm (Holte, R.C. (1993) <doi:10.1023/A:1022631118932>) with enhancements for sophisticated handling of numeric data and missing values together with extensive diagnostic functions. It is useful as a baseline for machine learning models and the rules are often helpful heuristics.
This package provides a function for fitting cumulative link, adjacent category, forward and backward continuation ratio, and stereotype ordinal response models when the number of parameters exceeds the sample size, using the the generalized monotone incremental forward stagewise method.
Apache OpenNLP jars and basic English language models.
This package provides functions to analyze and visualize meristic and mensural phenotypic data in a comparative framework. The package implements an automated pipeline that summarizes traits, identifies diagnostic variables among groups, performs multivariate and univariate statistical analyses, and produces publication-ready graphics. An earlier implementation (v1.0.0) is described in Torres (2025) <doi:10.64898/2025.12.18.695244>.
Data on the most popular baby names by sex and year, and for each state in Australia, as provided by the state and territory governments. The quality and quantity of the data varies with the state.
This package provides tools for checking that the output of an optimization algorithm is indeed at a local mode of the objective function. This is accomplished graphically by calculating all one-dimensional "projection plots" of the objective function, i.e., varying each input variable one at a time with all other elements of the potential solution being fixed. The numerical values in these plots can be readily extracted for the purpose of automated and systematic unit-testing of optimization routines.
The Ontario Marginalization Index is a socioeconomic model that is built on Statistics Canada census data. The model consists of four dimensions: In 2021, these dimensions were updated to "Material Resources" (previously called "Material Deprivation"), "Households and Dwellings" (previously called "Residential Instability"), "Age and Labour Force" (previously called "Dependency"), and "Racialized and Newcomer Populations" (previously called "Ethnic Concentration"). This update reflects a movement away from deficit-based language. 2021 data will load with these new dimension names, wheras 2011 and 2016 data will load with the historical dimension names. Each of these dimensions are imported for a variety of geographic levels (DA, CD, etc.) for the 2021, 2011 and 2016 administrations of the census. These data sets contribute to community analysis of equity with respect to Ontario's Anti-Racism Act. The Ontario Marginalization Index data is retrieved from the Public Health Ontario website: <https://www.publichealthontario.ca/en/data-and-analysis/health-equity/ontario-marginalization-index>. The shapefile data is retrieved from the Statistics Canada website: <https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm>.
Medication adherence, defined as medication-taking behavior that aligns with the agreed-upon treatment protocol, is critical for realizing the benefits of prescription medications. Medication adherence can be assessed using electronic adherence monitoring devices (EAMDs), pill bottles or boxes that contain a computer chip that records the date and time of each opening (or â actuationâ ). Before researchers can use EAMD data, they must apply a series of decision rules to transform actuation data into adherence data. The purpose of this R package ('oncmap') is to transform EAMD actuations in the form of a raw .csv file, information about the patient, regimen, and non-monitored periods into two daily adherence values -- Dose Taken and Correct Dose Taken.
Access data from the "City of Toronto Open Data Portal" (<https://open.toronto.ca>) directly from R.
Density, distribution function, quantile function and random generation for the Odd Log-Logistic Generalized Gamma proposed in Prataviera, F. et al (2017) <doi:10.1080/00949655.2016.1238088>.
Empirical or simulated disease outbreak data, provided either as RData or as text files.
Solver for linear, quadratic, and rational programs with linear, quadratic, and rational constraints. A unified interface to different R packages is provided. Optimization problems are transformed into equivalent formulations and solved by the respective package. For example, quadratic programming problems with linear, quadratic and rational constraints can be solved by augmented Lagrangian minimization using package alabama', or by sequential quadratic programming using solver slsqp'. Alternatively, they can be reformulated as optimization problems with second order cone constraints and solved with package cccp'.