Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides an interface to connect R with the <https://github.com/IDEMSInternational/open-app-builder> OpenAppBuilder platform, enabling users to retrieve and work with user and notification data for analysis and processing. It is designed for developers and analysts to seamlessly integrate data from OpenAppBuilder into R workflows via a Postgres database connection, allowing direct querying and import of app data into R.
Algorithms for D-, A-, I-, and c-optimal designs. For more details, see the package description. Some of the functions in this package require the gurobi software and its accompanying R package. For their installation, please follow the instructions at <https://www.gurobi.com> and the file gurobi_inst.txt, respectively.
An RStudio addin to assist with removing objects from the global environment. Features include removing objects according to name patterns and object type. During the course of an analysis, temporary objects are often created and this tool assists with removing them quickly. This can be useful when memory management within R is important.
This package provides tools for annotating characters (character matrices) with anatomical and phenotype ontologies. Includes functions for visualising character annotations and creating simple queries using ontological relationships.
This package provides a collection of functions that aid in calculating the optimum time to stock hatchery reared fish into a body of water given the growth, mortality and cost of raising a particular number of individuals to a certain length.
O-statistics, or overlap statistics, measure the degree of community-level trait overlap. They are estimated by fitting nonparametric kernel density functions to each speciesâ trait distribution and calculating their areas of overlap. For instance, the median pairwise overlap for a community is calculated by first determining the overlap of each species pair in trait space, and then taking the median overlap of each species pair in a community. This median overlap value is called the O-statistic (O for overlap). The Ostats() function calculates separate univariate overlap statistics for each trait, while the Ostats_multivariate() function calculates a single multivariate overlap statistic for all traits. O-statistics can be evaluated against null models to obtain standardized effect sizes. Ostats is part of the collaborative Macrosystems Biodiversity Project "Local- to continental-scale drivers of biodiversity across the National Ecological Observatory Network (NEON)." For more information on this project, see the Macrosystems Biodiversity Website (<https://neon-biodiversity.github.io/>). Calculation of O-statistics is described in Read et al. (2018) <doi:10.1111/ecog.03641>, and a teaching module for introducing the underlying biological concepts at an undergraduate level is described in Grady et al. (2018) <http://tiee.esa.org/vol/v14/issues/figure_sets/grady/abstract.html>.
This package provides tools for processing and analyzing data from the O-GlcNAcAtlas database <https://oglcnac.org/>, as described in Ma (2021) <doi:10.1093/glycob/cwab003>. It integrates UniProt <https://www.uniprot.org/> API calls to retrieve additional information. It is specifically designed for research workflows involving O-GlcNAcAtlas data, providing a flexible and user-friendly interface for customizing and downloading processed results. Interactive elements allow users to easily adjust parameters and handle various biological datasets.
OD-means is a hierarchical adaptive k-means algorithm based on origin-destination pairs. In the first layer of the hierarchy, the clusters are separated automatically based on the variation of the within-cluster distance of each cluster until convergence. The second layer of the hierarchy corresponds to the sub clustering process of small clusters based on the distance between the origin and destination of each cluster.
This package provides functions to perform subspace clustering and classification.
Allows you to easily execute expensive compute operations only once, and save the resulting object to disk.
This package provides a comprehensive system for designing and implementing on-farm precision field agronomic trials. You provide field data, tell ofpetrial how to design a trial, and get readily-usable trial design files and a report checks the validity and reliability of the trial design.
Computes the pdf, cdf, quantile function, hazard function and generating random numbers for Odd log-logistic family (OLL-G). This family have been developed by different authors in the recent years. See Alizadeh (2019) <doi:10.31801/cfsuasmas.542988> for example.
Harvest metadata using the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) version 2.0 (for more information, see <https://www.openarchives.org/OAI/openarchivesprotocol.html>).
Intended to assist in the choice of the sampling strategy to implement in a survey.
This package provides tools to analyze and infer orthology and paralogy relationships between glutamine synthetase proteins in seed plants.
This package provides a wrapper for Paddle - The Merchant of Record for digital products API (Application Programming Interface) <https://developer.paddle.com/api-reference/overview>. Provides functions to manage and analyze products, customers, invoices and many more.
Some functions useful to perform a Peak Over Threshold analysis in univariate and bivariate cases, see Beirlant et al. (2004) <doi:10.1002/0470012382>. A user guide is available in the vignette.
Data analysis for Project Risk Management via the Second Moment Method, Monte Carlo Simulation, Contingency Analysis, Sensitivity Analysis, Earned Value Management, Learning Curves, Design Structure Matrices, and more.
In a typical protein labelling procedure, proteins are chemically tagged with a functional group, usually at specific sites, then digested into peptides, which are then analyzed using matrix-assisted laser desorption ionization - time of flight mass spectrometry (MALDI-TOF MS) to generate peptide fingerprint. Relative to the control, peptides that are heavier by the mass of the labelling group are informative for sequence determination. Searching for peptides with such mass shifts, however, can be difficult. This package, designed to tackle this inconvenience, takes as input the mass list of two or multiple MALDI-TOF MS mass lists, and makes pairwise comparisons between the labeled groups vs. control, and restores centroid mass spectra with highlighted peaks of interest for easier visual examination. Particularly, peaks differentiated by the mass of the labelling group are defined as a â pairâ , those with equal masses as a â matchâ , and all the other peaks as a â mismatchâ .For more bioanalytical background information, refer to following publications: Jingjing Deng (2015) <doi:10.1007/978-1-4939-2550-6_19>; Elizabeth Chang (2016) <doi:10.7171/jbt.16-2702-002>.
Genotyping arrays enable the direct measurement of an individuals genotype at thousands of markers. plinkQC facilitates genotype quality control for genetic association studies as described by Anderson and colleagues (2010) <doi:10.1038/nprot.2010.116>. It makes PLINK basic statistics (e.g. missing genotyping rates per individual, allele frequencies per genetic marker) and relationship functions accessible from R and generates a per-individual and per-marker quality control report. Individuals and markers that fail the quality control can subsequently be removed to generate a new, clean dataset. Removal of individuals based on relationship status is optimised to retain as many individuals as possible in the study. Additionally, there is a trained classifier to predict genomic ancestry of human samples.
This package provides tools for the test for the comparison of survival curves, the evaluation of the goodness-of-fit and the predictive capacity of the proportional hazards model.
Data for the extraterrestrial solar spectral irradiance and ground level solar spectral irradiance and irradiance. In addition data for shade light under vegetation and irradiance time series from different broadband sensors. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
Designed for prediction error estimation through resampling techniques, possibly accelerated by parallel execution on a compute cluster. Newly developed model fitting routines can be easily incorporated. Methods used in the package are detailed in Porzelius Ch., Binder H. and Schumacher M. (2009) <doi:10.1093/bioinformatics/btp062> and were used, for instance, in Porzelius Ch., Schumacher M. and Binder H. (2011) <doi:10.1007/s00180-011-0236-6>.
Price comparisons within or between countries provide an overall measure of the relative difference in prices, often denoted as price levels. This package provides index number methods for such price comparisons (e.g., The World Bank, 2011, <doi:10.1596/978-0-8213-9728-2>). Moreover, it contains functions for sampling and characterizing price data.