Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We consider the network structure detection for variables Y with auxiliary variables X accommodated, which are possibly subject to measurement error. The following three functions are designed to address various structures by different methods : one is NP_Graph() that is used for handling the nonlinear relationship between the responses and the covariates, another is Joint_Gaussian() that is used for correction in linear regression models via the Gaussian maximum likelihood, and the other Cond_Gaussian() is for linear regression models via conditional likelihood function.
This package provides a suite of non-parametric, visual tools for assessing differences in data structures for two datasets that contain different observations of the same variables. These tools are all based on Principal Component Analysis (PCA) and thus effectively address differences in the structures of the covariance matrices of the two datasets. The PCASDC tools consist of easy-to-use, intuitive plots that each focus on different aspects of the PCA decompositions. The cumulative eigenvalue (CE) plot describes differences in the variance components (eigenvalues) of the deconstructed covariance matrices. The angle plot presents the information loss when moving from the PCA decomposition of one dataset to the PCA decomposition of the other. The chroma plot describes the loading patterns of the two datasets, thereby presenting the relative weighting and importance of the variables from the original dataset.
Simulation of models Poisson-Tweedie.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey 2014 Women (age 15-49 years) questionnaire data for Punjab, Pakistan.
It provides users with functions to parse International Phonetic Alphabet (IPA) transcriptions into individual phones (tokenisation) based on default IPA symbols and optional user specified multi-character phones. The tokenised transcriptions can be used for obtaining counts of phones or for searching for words matching phonetic patterns.
Perform 1-dim/2-dim projection pursuit, grand tour and guided tour for big data based on data nuggets. Reference papers: [1] Beavers et al., (2024) <doi:10.1080/10618600.2024.2341896>. [2] Duan, Y., Cabrera, J., & Emir, B. (2023). "A New Projection Pursuit Index for Big Data." <doi:10.48550/arXiv.2312.06465>.
Computes optimal changepoint models using the Poisson likelihood for non-negative count data, subject to the PeakSeg constraint: the first change must be up, second change down, third change up, etc. For more info about the models and algorithms, read "Constrained Dynamic Programming and Supervised Penalty Learning Algorithms for Peak Detection" <https://jmlr.org/papers/v21/18-843.html> by TD Hocking et al.
The pedsuite is a collection of packages for pedigree analysis, covering applications in forensic genetics, medical genetics and more. A detailed presentation of the pedsuite is given in the book Pedigree Analysis in R (Vigeland, 2021, ISBN: 9780128244302).
Useful set of tools for plotting network diagrams in any kind of project.
This package provides functions to process, format and store ActiGraph GT1M and GT3X accelerometer data.
Includes functions implementing the conditionally optimal matching algorithm, which can be used to generate matched samples in designs with multiple groups. The algorithm is described in Nattino, Song and Lu (2022) <doi:10.1016/j.csda.2021.107364>.
Most of the time floating point arithmetic does approximately the right thing. When adding sums or having products of numbers that greatly differ in magnitude, the floating point arithmetic may be incorrect. This package implements the Kahan (1965) sum <doi:10.1145/363707.363723>, Neumaier (1974) sum <doi:10.1002/zamm.19740540106>, pairwise-sum (adapted from NumPy', See Castaldo (2008) <doi:10.1137/070679946> for a discussion of accuracy), and arbitrary precision sum (adapted from the fsum in Python ; Shewchuk (1997) <https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf>). In addition, products are changed to long double precision for accuracy, or changed into a log-sum for accuracy.
Some functions useful to perform a Peak Over Threshold analysis in univariate and bivariate cases, see Beirlant et al. (2004) <doi:10.1002/0470012382>. A user guide is available in the vignette.
Simulating particle movement in 2D space has many application. The particles package implements a particle simulator based on the ideas behind the d3-force JavaScript library. particles implements all forces defined in d3-force as well as others such as vector fields, traps, and attractors.
Phenotype study cohorts in data mapped to the Observational Medical Outcomes Partnership Common Data Model. Diagnostics are run at the database, code list, cohort, and population level to assess whether study cohorts are ready for research.
Bayesian variable selection for linear regression models using hierarchical priors. There is a prior that combines information across responses and one that combines information across covariates, as well as a standard spike and slab prior for comparison. An MCMC samples from the marginal posterior distribution for the 0-1 variables indicating if each covariate belongs to the model for each response.
Permutation Distribution Clustering is a clustering method for time series. Dissimilarity of time series is formalized as the divergence between their permutation distributions. The permutation distribution was proposed as measure of the complexity of a time series.
Conduct a priori power analyses via Monte-Carlo style data simulation for linear and generalized linear mixed-effects models (LMMs/GLMMs). Provides a user-friendly workflow with helper functions to easily define fixed and random effects as well as diagnostic functions to evaluate the adequacy of the results of the power analysis.
This package provides a unified and user-friendly framework for applying the principal sufficient dimension reduction methods for both linear and nonlinear cases. The package has an extendable power by varying loss functions for the support vector machine, even for an user-defined arbitrary function, unless those are convex and differentiable everywhere over the support (Li et al. (2011) <doi:10.1214/11-AOS932>). Also, it provides a real-time sufficient dimension reduction update procedure using the principal least squares support vector machine (Artemiou et al. (2021) <doi:10.1016/j.patcog.2020.107768>).
Most price indexes are made with a two-step procedure, where period-over-period elementary indexes are first calculated for a collection of elementary aggregates at each point in time, and then aggregated according to a price index aggregation structure. These indexes can then be chained together to form a time series that gives the evolution of prices with respect to a fixed base period. This package contains a collection of functions that revolve around this work flow, making it easy to build standard price indexes, and implement the methods described by Balk (2008, <doi:10.1017/CBO9780511720758>), von der Lippe (2007, <doi:10.3726/978-3-653-01120-3>), and the CPI manual (2020, <doi:10.5089/9781484354841.069>) for bilateral price indexes.
Pedigree related functions.
An implementation of the sample size computation method for network models proposed by Constantin et al. (2023) <doi:10.1037/met0000555>. The implementation takes the form of a three-step recursive algorithm designed to find an optimal sample size given a model specification and a performance measure of interest. It starts with a Monte Carlo simulation step for computing the performance measure and a statistic at various sample sizes selected from an initial sample size range. It continues with a monotone curve-fitting step for interpolating the statistic across the entire sample size range. The final step employs stratified bootstrapping to quantify the uncertainty around the fitted curve.
Build your own universe of packages similar to the tidyverse package <https://tidyverse.org/> with this meta-package creator. Create a package-verse, or meta package, by supplying a custom name for the collection of packages and the vector of desired package names to includeâ and optionally supply a destination directory, an indicator of whether to keep the created package directory, and/or a vector of verbs implement via the usethis <http://usethis.r-lib.org/> package.
Calculates the lexicogrammatical and functional features described by Biber (1985) <doi:10.1515/ling.1985.23.2.337> and widely used for text-type, register, and genre classification tasks.