Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for scraping match statistics and player data from the Athletes Unlimited (UA) website <https://auprosports.com/volleyball/>, the League One Volleyball website <https://lovb.com>, and the Major League (MLV) website <https://provolleyball.com>.
Likelihood based population viability analysis in the presence of observation error and missing data. The package can be used to fit, compare, predict, and forecast various growth model types using data cloning.
Generates simple and beautiful one-page HTML reference manuals with package documentation. Math rendering and syntax highlighting are done server-side in R such that no JavaScript libraries are needed in the browser, which makes the documentation portable and fast to load.
This package provides a function kitten() which creates cute little packages which pass R package checks. This sets it apart from package.skeleton() which it calls, and which leaves imperfect files behind. As this is not exactly helpful for beginners, kitten() offers an alternative. Unit test support can be added via the tinytest package (if present), and documentation-creation support can be added via roxygen2 (if present).
PHATE is a tool for visualizing high dimensional single-cell data with natural progressions or trajectories. PHATE uses a novel conceptual framework for learning and visualizing the manifold inherent to biological systems in which smooth transitions mark the progressions of cells from one state to another. To see how PHATE can be applied to single-cell RNA-seq datasets from hematopoietic stem cells, human embryonic stem cells, and bone marrow samples, check out our publication in Nature Biotechnology at <doi:10.1038/s41587-019-0336-3>.
This package provides a collection of R Markdown templates for creating simple and easy to personalize single page websites.
Multi-state models are essential tools in longitudinal data analysis. One primary goal of these models is the estimation of transition probabilities, a critical metric for predicting clinical prognosis across various stages of diseases or medical conditions. Traditionally, inference in multi-state models relies on the Aalen-Johansen (AJ) estimator which is consistent under the Markov assumption. However, in many practical applications, the Markovian nature of the process is often not guaranteed, limiting the applicability of the AJ estimator in more complex scenarios. This package extends the landmark Aalen-Johansen estimator (Putter, H, Spitoni, C (2018) <doi:10.1177/0962280216674497>) incorporating presmoothing techniques described by Soutinho, Meira-Machado and Oliveira (2020) <doi:10.1080/03610918.2020.1762895>, offering a robust alternative for estimating transition probabilities in non-Markovian multi-state models with multiple states and potential reversible transitions.
This package provides tools for computing bare-bones and psychometric meta-analyses and for generating psychometric data for use in meta-analysis simulations. Supports bare-bones, individual-correction, and artifact-distribution methods for meta-analyzing correlations and d values. Includes tools for converting effect sizes, computing sporadic artifact corrections, reshaping meta-analytic databases, computing multivariate corrections for range variation, and more. Bugs can be reported to <https://github.com/psychmeta/psychmeta/issues> or <issues@psychmeta.com>.
This package provides functions for data normalization and transformation in preprocessing stages. Implements scaling methods (min-max, Z-score, L2 normalization) and power transformations (Box-Cox, Yeo-Johnson). Box-Cox transformation is described in Box and Cox (1964) <doi:10.1111/j.2517-6161.1964.tb00553.x>, Yeo-Johnson transformation in Yeo and Johnson (2000) <doi:10.1093/biomet/87.4.954>.
In gene sequencing methods, the topological features of protein-protein interaction (PPI) networks are often used, such as ToppNet <https://toppgene.cchmc.org>. In this study, a candidate gene prioritization method was proposed for non-communicable diseases considering disease risks transferred between genes in weighted disease PPI networks with weights for nodes and edges based on functional information.
Identify the characteristics of patients in data mapped to the Observational Medical Outcomes Partnership (OMOP) common data model.
This package provides a function PWI() that calculates prize winner indices based on bibliometric data is provided. The default is the Derek de Solla Price Memorial Medal'. Users can provide recipients of other prizes.
Weighted Deming regression, also known as errors-in-variable regression, is applied with suitable weights. Weights are modeled via a precision profile; thus the methods implemented here are referred to as precision profile weighted Deming (PWD) regression. The package covers two settings รข one where the precision profiles are known either from external studies or from adequate replication of the X and Y readings, and one in which there is a plausible functional form for the precision profiles but the exact (unknown) function must be estimated from the (generally singlicate) readings. The function set includes tools for: estimated standard errors (via jackknifing); standardized-residual analysis function with regression diagnostic tools for normality, linearity and constant variance; and an outlier analysis identifying significant outliers for closer investigation. The following reference provides further information on mathematical derivations and applications. Hawkins, D.M., and J.J. Kraker. Precision Profile Weighted Deming Regression for Methods Comparison', (in press) <doi:10.1093/jalm/jfaf183>.
This package provides a very small package for more convenient use of NaileR'. You provide a data set containing a latent variable you want to understand. It generates a description and an interpretation of this latent variable using a Large Language Model. For perceptual data, it describes the stimuli used in the experiment.
Allows users to stem Persian texts for text analysis.
Easy and efficient access to the API provided by Prevedere', an industry insights and predictive analytics company. Query and download indicators, models and workbenches built with Prevedere for further analysis and reporting <https://www.prevedere.com/>.
Evaluates the strength of a surrogate marker by estimating the proportion of treatment effect explained (PTE) and relative power(RP) for the optimally-transformed version of the surrogate. Details available in Wang et al (2022) <arXiv:2209.08414>.
This package provides a novel tool for generating a piecewise constant estimation list of increasingly complex predictors based on an intensive and comprehensive search over the entire covariate space.
This package provides a set of tools to install, manage and run several Pandoc versions.
This package provides a Shiny Web Application to predict and visualize concentrations of pharmaceuticals in the aqueous environment. Jagadeesan K., Barden R. and Kasprzyk-Hordern B. (2022) <https://www.ssrn.com/abstract=4306129>.
This package provides functions for generating progressively Type-II censored data in a mixture structure and fitting models using a constrained EM algorithm. It can also create a progressive Type-II censored version of a given real dataset to be considered for model fitting.
Producing the time-dependent receiver operating characteristic (ROC) curve through parametric approaches. Tools for generating random data, fitting, predicting and check goodness of fit are prepared. The methods are developed from the theoretical framework of proportional hazard model and copula functions. Using this package, users can now simulate parametric time-dependent ROC and run experiment to understand the behavior of the curve under different scenario.
This is an implementation of the partial profile score feature selection (PPSFS) approach to generalized linear (interaction) models. The PPSFS is highly scalable even for ultra-high-dimensional feature space. See the paper by Xu, Luo and Chen (2022, <doi:10.4310/21-SII706>).
This package implements projection pursuit forest algorithm for supervised classification.