Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for transforming, a posteriori time-scaling, and modifying phylogenies containing extinct (i.e. fossil) lineages. In particular, most users are interested in the functions timePaleoPhy, bin_timePaleoPhy, cal3TimePaleoPhy and bin_cal3TimePaleoPhy, which date cladograms of fossil taxa using stratigraphic data. This package also contains a large number of likelihood functions for estimating sampling and diversification rates from different types of data available from the fossil record (e.g. range data, occurrence data, etc). paleotree users can also simulate diversification and sampling in the fossil record using the function simFossilRecord, which is a detailed simulator for branching birth-death-sampling processes composed of discrete taxonomic units arranged in ancestor-descendant relationships. Users can use simFossilRecord to simulate diversification in incompletely sampled fossil records, under various models of morphological differentiation (i.e. the various patterns by which morphotaxa originate from one another), and with time-dependent, longevity-dependent and/or diversity-dependent rates of diversification, extinction and sampling. Additional functions allow users to translate simulated ancestor-descendant data from simFossilRecord into standard time-scaled phylogenies or unscaled cladograms that reflect the relationships among taxon units.
This package implements Procrustes cross-validation method for Principal Component Analysis, Principal Component Regression and Partial Least Squares regression models. S. Kucheryavskiy (2023) <doi:10.1016/j.aca.2023.341096>.
This package performs partial principal component analysis of a large sparse matrix. The matrix may be stored as a list of matrices to be concatenated (implicitly) horizontally. Useful application includes cases where the number of total nonzero entries exceed the capacity of 32 bit integers (e.g., with large Single Nucleotide Polymorphism data).
This package provides functions for conducting power analysis in ANOVA designs, including between-, within-, and mixed-factor designs, with full support for both main effects and interactions. The package allows calculation of statistical power, required total sample size, significance level, and minimal detectable effect sizes expressed as partial eta squared or Cohen's f for ANOVA terms and planned contrasts. In addition, complementary functions are included for common related tests such as t-tests and correlation tests, making the package a convenient toolkit for power analysis in experimental psychology and related fields.
Permute treatment labels for taxa and environmental gradients to generate an empirical distribution of change points. This is an extension for the TITAN2 package <https://cran.r-project.org/package=TITAN2>.
This package implements entrywise splitting cross-validation (ECV) and its penalized variant (pECV) for selecting the number of factors in generalized factor models.
Systematic conservation prioritization using mixed integer linear programming (MILP). It provides a flexible interface for building and solving conservation planning problems. Once built, conservation planning problems can be solved using a variety of commercial and open-source exact algorithm solvers. By using exact algorithm solvers, solutions can be generated that are guaranteed to be optimal (or within a pre-specified optimality gap). Furthermore, conservation problems can be constructed to optimize the spatial allocation of different management actions or zones, meaning that conservation practitioners can identify solutions that benefit multiple stakeholders. To solve large-scale or complex conservation planning problems, users should install the Gurobi optimization software (available from <https://www.gurobi.com/>) and the gurobi R package (see Gurobi Installation Guide vignette for details). Users can also install the IBM CPLEX software (<https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer>) and the cplexAPI R package (available at <https://github.com/cran/cplexAPI>). Additionally, the rcbc R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to generate solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). For further details, see Hanson et al. (2025) <doi:10.1111/cobi.14376>.
When using pooled p-values to adjust for multiple testing, there is an inherent balance that must be struck between rejection based on weak evidence spread among many tests and strong evidence in a few, explored in Salahub and Olford (2023) <arXiv:2310.16600>. This package provides functionality to compute marginal and central rejection levels and the centrality quotient for p-value pooling functions and provides implementations of the chi-squared quantile pooled p-value (described in Salahub and Oldford (2023)) and a proposal from Heard and Rubin-Delanchy (2018) <doi:10.1093/biomet/asx076> to control the quotient's value.
Fits single- and multiple-group penalized factor analysis models via a trust-region algorithm with integrated automatic multiple tuning parameter selection (Geminiani et al., 2021 <doi:10.1007/s11336-021-09751-8>). Available penalties include lasso, adaptive lasso, scad, mcp, and ridge.
Using the Bayesian state-space approach, we developed a continuous development model to quantify dynamic incremental changes in the response variable. While the model was originally developed for daily changes in forest green-up, the model can be used to predict any similar process. The CDM can capture both timing and rate of nonlinear processes. Unlike statics methods, which aggregate variations into a single metric, our dynamic model tracks the changing impacts over time. The CDM accommodates nonlinear responses to variation in predictors, which changes throughout development.
This package provides a unified interface to access and manipulate various Philippine statistical classifications. It allows users to retrieve, filter, and harmonize classification data, making it easier to work with Philippine statistical data in R.
This package provides functions to compute p-values based on permutation tests. Regression, ANOVA and ANCOVA, omnibus F-tests, marginal unilateral and bilateral t-tests are available. Several methods to handle nuisance variables are implemented (Kherad-Pajouh, S., & Renaud, O. (2010) <doi:10.1016/j.csda.2010.02.015> ; Kherad-Pajouh, S., & Renaud, O. (2014) <doi:10.1007/s00362-014-0617-3> ; Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014) <doi:10.1016/j.neuroimage.2014.01.060>). An extension for the comparison of signals issued from experimental conditions (e.g. EEG/ERP signals) is provided. Several corrections for multiple testing are possible, including the cluster-mass statistic (Maris, E., & Oostenveld, R. (2007) <doi:10.1016/j.jneumeth.2007.03.024>) and the threshold-free cluster enhancement (Smith, S. M., & Nichols, T. E. (2009) <doi:10.1016/j.neuroimage.2008.03.061>).
This package provides a unified and user-friendly framework for applying the principal sufficient dimension reduction methods for both linear and nonlinear cases. The package has an extendable power by varying loss functions for the support vector machine, even for an user-defined arbitrary function, unless those are convex and differentiable everywhere over the support (Li et al. (2011) <doi:10.1214/11-AOS932>). Also, it provides a real-time sufficient dimension reduction update procedure using the principal least squares support vector machine (Artemiou et al. (2021) <doi:10.1016/j.patcog.2020.107768>).
This package provides tools for cross-validated Lasso and Post-Lasso estimation. Built on top of the glmnet package by Friedman, Hastie and Tibshirani (2010) <doi:10.18637/jss.v033.i01>, the main function plasso() extends the standard glmnet output with coefficient paths for Post-Lasso models, while cv.plasso() performs cross-validation for both Lasso and Post-Lasso models and different ways to select the penalty parameter lambda as discussed in Knaus (2021) <doi:10.1111/rssa.12623>.
Parse messy geographic coordinates from various character formats to decimal degree numeric values. Parse coordinates into their parts (degree, minutes, seconds); calculate hemisphere from coordinates; pull out individually degrees, minutes, or seconds; add and subtract degrees, minutes, and seconds. C++ code herein originally inspired from code written by Jeffrey D. Bogan, but then completely re-written.
Computes profile extrema functions for arbitrary functions. If the function is expensive-to-evaluate it computes profile extrema by emulating the function with a Gaussian process (using package DiceKriging'). In this case uncertainty quantification on the profile extrema can also be computed. The different plotting functions for profile extrema give the user a tool to better locate excursion sets.
Visualizes panel data. It has three main functionalities: (1) it plots the treatment status and missing values in a panel dataset; (2) it visualizes the temporal dynamics of a main variable of interest; (3) it depicts the bivariate relationships between a treatment variable and an outcome variable either by unit or in aggregate. For details, see <doi:10.18637/jss.v107.i07>.
Presentation of distributions such as: two-piece power normal (TPPN), plasticizing component (PC), DS normal (DSN), expnormal (EN), Sulewski plasticizing component (SPC), easily changeable kurtosis (ECK) distributions. Density, distribution function, quantile function and random generation are presented. For details on this method see: Sulewski (2019) <doi:10.1080/03610926.2019.1674871>, Sulewski (2021) <doi:10.1080/03610926.2020.1837881>, Sulewski (2021) <doi:10.1134/S1995080221120337>, Sulewski (2022) <"New members of the Johnson family of probability dis-tributions: properties and application">, Sulewski, Volodin (2022) <doi:10.1134/S1995080222110270>, Sulewski (2023) <doi:10.17713/ajs.v52i3.1434>.
Programmatic interface to the PhenoCam web services (<https://phenocam.nau.edu/webcam>). Allows for easy downloading of PhenoCam data directly to your R workspace or your computer and provides post-processing routines for consistent and easy timeseries outlier detection, smoothing and estimation of phenological transition dates. Methods for this package are described in detail in Hufkens et. al (2018) <doi:10.1111/2041-210X.12970>.
Implementation of PCMRS (Partial Credit Model with Response Styles) as proposed in by Tutz, Schauberger and Berger (2018) <doi:10.1177/0146621617748322> . PCMRS is an extension of the regular partial credit model. PCMRS allows for an additional person parameter that characterizes the response style of the person. By taking the response style into account, the estimates of the item parameters are less biased than in partial credit models.
Algorithms to speed up the Bayesian Lasso Cox model (Lee et al., Int J Biostat, 2011 <doi:10.2202/1557-4679.1301>) and the Bayesian Lasso Cox with mandatory variables (Zucknick et al. Biometrical J, 2015 <doi:10.1002/bimj.201400160>).
This package implements statistical methods for estimating disease penetrance in family-based studies. Penetrance refers to the probability of disease§ manifestation in individuals carrying specific genetic variants. The package provides tools for age-specific penetrance estimation, handling missing data, and accounting for ascertainment bias in family studies. Cite as: Kubista, N., Braun, D. & Parmigiani, G. (2024) <doi:10.48550/arXiv.2411.18816>.
Calculates multivariate analysis of variance based on permutations and some associated pictorial representations. The pictorial representation is based on the principal coordinates of the group means. There are some original results that will be published soon.
Spearman's rank correlation test with precomputed exact null distribution for n <= 22.