Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Matches cases to controls based on genotype principal components (PC). In order to produce better results, matches are based on the weighted distance of PCs where the weights are equal to the % variance explained by that PC. A weighted Mahalanobis distance metric (Kidd et al. (1987) <DOI:10.1016/0031-3203(87)90066-5>) is used to determine matches.
Calculates, via simulation, power and appropriate stopping alpha boundaries (and/or futility bounds) for sequential analyses (i.e., group sequential design) as well as for multiple hypotheses (multiple tests included in an analysis), given any specified global error rate. This enables the sequential use of practically any significance test, as long as the underlying data can be simulated in advance to a reasonable approximation. Lukács (2022) <doi:10.21105/joss.04643>.
The algorithm combines the most predictive variable, such as count of the main International Classification of Diseases (ICD) codes, and other Electronic Health Record (EHR) features (e.g. health utilization and processed clinical note data), to obtain a score for accurate risk prediction and disease classification. In particular, it normalizes the surrogate to resemble gaussian mixture and leverages the remaining features through random corruption denoising. Background and details about the method can be found at Yu et al. (2018) <doi:10.1093/jamia/ocx111>.
This package implements the Principal Components Difference-in-Differences estimators as described in Chan, M. K., & Kwok, S. S. (2022) <doi:10.1080/07350015.2021.1914636>.
Permutation (randomisation) test for single-case phase design data with two phases (e.g., pre- and post-treatment). Correction for dependency of observations is done through stepwise resampling the time series while varying the distance between observations. The required distance 0,1,2,3.. is determined based on repeated dependency testing while stepwise increasing the distance. In preparation: Vroegindeweij et al. "A Permutation distancing test for single-case observational AB phase design data: A Monte Carlo simulation study".
Data sets for the Panel Data Econometrics with R <doi:10.1002/9781119504641> book.
Makes the time series prediction easier by automatizing this process using four main functions: prep(), modl(), pred() and postp(). Features different preprocessing methods to homogenize variance and to remove trend and seasonality. Also has the potential to bring together different predictive models to make comparatives. Features ARIMA and Data Mining Regression models (using caret).
Identification of the most appropriate pharmacotherapy for each patient based on genomic alterations is a major challenge in personalized oncology. PANACEA is a collection of personalized anti-cancer drug prioritization approaches utilizing network methods. The methods utilize personalized "driverness" scores from driveR to rank drugs, mapping these onto a protein-protein interaction network. The "distance-based" method scores each drug based on these scores and distances between drugs and genes to rank given drugs. The "RWR" method propagates these scores via a random-walk with restart framework to rank the drugs. The methods are described in detail in Ulgen E, Ozisik O, Sezerman OU. 2023. PANACEA: network-based methods for pharmacotherapy prioritization in personalized oncology. Bioinformatics <doi:10.1093/bioinformatics/btad022>.
Pharmacokinetics is the study of drug absorption, distribution, metabolism, and excretion. The pharmacokinetics model explains that how the drug concentration change as the drug moves through the different compartments of the body. For pharmacokinetic modeling and analysis, it is essential to understand the basic pharmacokinetic parameters. All parameters are considered, but only some of parameters are used in the model. Therefore, we need to convert the estimated parameters to the other parameters after fitting the specific pharmacokinetic model. This package is developed to help this converting work. For more detailed explanation of pharmacokinetic parameters, see "Gabrielsson and Weiner" (2007), "ISBN-10: 9197651001"; "Benet and Zia-Amirhosseini" (1995) <DOI: 10.1177/019262339502300203>; "Mould and Upton" (2012) <DOI: 10.1038/psp.2012.4>; "Mould and Upton" (2013) <DOI: 10.1038/psp.2013.14>.
Compute detailed and aggregated performance spectrum for event data. The detailed performance spectrum describes the event data in terms of segments, where the performance of each segment is measured and plotted for any occurrences of this segment over time and can be classified, e.g., regarding the overall population. The aggregated performance spectrum visualises the amount of cases of particular performance over time. Denisov, V., Fahland, D., & van der Aalst, W. M. P. (2018) <doi:10.1007/978-3-319-98648-7_9>.
In the big data setting, working data sets are often distributed on multiple machines. However, classical statistical methods are often developed to solve the problems of single estimation or inference. We employ a novel parallel quasi-likelihood method in generalized linear models, to make the variances between different sub-estimators relatively similar. Estimates are obtained from projection subsets of data and later combined by suitably-chosen unknown weights. The philosophy of the package is described in Guo G. (2020) <doi:10.1007/s00180-020-00974-4>.
Spectral emission data for some frequently used light emitting diodes available as electronic components. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
This package provides classes and methods for modelling and simulation of periodically correlated (PC) and periodically integrated time series. Compute theoretical periodic autocovariances and related properties of PC autoregressive moving average models. Some original methods including Boshnakov & Iqelan (2009) <doi:10.1111/j.1467-9892.2009.00617.x>, Boshnakov (1996) <doi:10.1111/j.1467-9892.1996.tb00281.x>.
Perform tasks commonly encountered when preparing and analysing demographic data. Some functions are intended for end users, and others for developers. Includes functions for working with life tables.
R's implementation of the JavaScript library path-to-regexp', it aims to provide R web frameworks features such as parameter handling among other URL path utilities.
Calculations of an information criterion are proposed to check the quality of simulations results of Agent-based models (ABM/IBM) or other non-linear rule-based models. The POMDEV measure (Pattern Oriented Modelling DEViance) is based on the Kullback-Leibler divergence and likelihood theory. It basically indicates the deviance of simulation results from field observations. Once POMDEV scores and metropolis-hasting sampling on different model versions are effectuated, POMIC scores (Pattern Oriented Modelling Information Criterion) can be calculated. This method could be further developed to incorporate multiple patterns assessment. Piou C, U Berger and V Grimm (2009) <doi:10.1016/j.ecolmodel.2009.05.003>.
Generates Weibull-parameterized estimates of phenology for any percentile of a distribution using the framework established in Cooke (1979) <doi:10.1093/biomet/66.2.367>. Extensive testing against other estimators suggest the weib_percentile() function is especially useful in generating more accurate and less biased estimates of onset and offset (Belitz et al. 2020) <doi:10.1111/2041-210X.13448>. Non-parametric bootstrapping can be used to generate confidence intervals around those estimates, although this is computationally expensive. Additionally, this package offers an easy way to perform non-parametric bootstrapping to generate confidence intervals for quantile estimates, mean estimates, or any statistical function of interest.
This package provides functions to patch specials in .dvi files, or entries in .synctex files. Works with concordance=TRUE in Sweave, knitr or R Markdown to link sources to previews.
Calculate parametric mortality and Fertility models, following packages BaSTA in Colchero, Jones and Rebke (2012) <doi:10.1111/j.2041-210X.2012.00186.x> and BaFTA <https://github.com/fercol/BaFTA>, summary statistics (e.g. ageing rates, life expectancy, lifespan equality, etc.), life table and product limit estimators from census data.
This package provides functions for obtaining the density, random deviates and maximum likelihood estimates of the Poisson lognormal distribution and the bivariate Poisson lognormal distribution.
This package contains a function to categorize accelerometer readings collected in free-living (e.g., for 24 hours/day for 7 days), preprocessed and compressed as counts (unit-less value) in a specified time period termed epoch (e.g., 1 minute) as either bedrest (sleep) or active. The input is a matrix with a timestamp column and a column with number of counts per epoch. The output is the same dataframe with an additional column termed bedrest. In the bedrest column each line (epoch) contains a function-generated classification br or a denoting bedrest/sleep and activity, respectively. The package is designed to be used after wear/nonwear marking function in the PhysicalActivity package. Version 1.1 adds preschool thresholds and corrects for possible errors in algorithm implementation.
This package implements the Phylogeny-Guided Microbiome OTU-Specific Association Test method, which boosts the testing power by adaptively borrowing information from phylogenetically close OTUs (operational taxonomic units) of the target OTU. This method is built on a kernel machine regression framework and allows for flexible modeling of complex microbiome effects, adjustments for covariates, and can accommodate both continuous and binary outcomes.
This package implements the pcgen algorithm, which is a modified version of the standard pc-algorithm, with specific conditional independence tests and modified orientation rules. pcgen extends the approach of Valente et al. (2010) <doi:10.1534/genetics.109.112979> with reconstruction of direct genetic effects.
For a data matrix with m rows and n columns (m>=n), the power method is used to compute, simultaneously, the eigendecomposition of a square symmetric matrix. This result is used to obtain the singular value decomposition (SVD) and the principal component analysis (PCA) results. Compared to the classical SVD method, the first r singular values can be computed.