Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to estimate statistical errors of phylogenetic metrics particularly to detect binary trait influence on diversification, as well as a function to simulate trees with fixed number of sampled taxa and trait prevalence.
Read R package news files, regardless of whether or not the package is installed.
Chromatin immunoprecipitation DNA sequencing results in genomic tracks that show enriched regions or peaks where proteins are bound. This package implements fast C code that computes the true and false positives with respect to a database of annotated region labels.
The Penn World Table 8.x provides information on relative levels of income, output, inputs, and productivity for 167 countries between 1950 and 2011.
An implementation of a hybrid method of person-oriented method and perturbation on the model. Pompom is the initials of the two methods. The hybrid method will provide a multivariate intraindividual variability metric (iRAM). The person-oriented method used in this package refers to uSEM (unified structural equation modeling, see Kim et al., 2007, Gates et al., 2010 and Gates et al., 2012 for details). Perturbation on the model was conducted according to impulse response analysis introduced in Lutkepohl (2007). Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007) <doi:10.1002/hbm.20259>. Gates, K. M., Molenaar, P. C. M., Hillary, F. G., Ram, N., & Rovine, M. J. (2010) <doi:10.1016/j.neuroimage.2009.12.117>. Gates, K. M., & Molenaar, P. C. M. (2012) <doi:10.1016/j.neuroimage.2012.06.026>. Lutkepohl, H. (2007, ISBN:3540262393).
Extends the Heckman selection framework to panel data with individual random effects. The first stage models participation via a panel Probit specification, while the second stage can take a panel linear, Probit, Poisson, or Poisson log-normal form. Model details are provided in Bailey and Peng (2025) <doi:10.2139/ssrn.5475626> and Peng and Van den Bulte (2024) <doi:10.1287/mnsc.2019.01897>.
This package implements a unified interface for benchmarking meta-analytic publication bias correction methods through simulation studies (see Bartoš et al., 2025, <doi:10.48550/arXiv.2510.19489>). It provides 1) predefined data-generating mechanisms from the literature, 2) functions for running meta-analytic methods on simulated data, 3) pre-simulated datasets and pre-computed results for reproducible benchmarks, 4) tools for visualizing and comparing method performance.
Simulate the dynamic of lion populations using a specific Individual-Based Model (IBM) compiled in C.
Large-scale gene expression studies allow gene network construction to uncover associations among genes. This package is developed for estimating and testing partial correlation graphs with prior information incorporated.
This package provides a toolbox for deterministic, probabilistic and privacy-preserving record linkage techniques. Combines the functionality of the Merge ToolBox (<https://www.record-linkage.de>) with current privacy-preserving techniques.
Explore the world of R graphics with fun and interesting plot functions! Use make_LED() to create dynamic LED screens, draw interconnected rings with Olympic_rings(), and make festive Chinese couplets with chunlian(). Unleash your creativity and turn data into exciting visuals!
Calculates profile repeatability for replicate stress response curves, or similar time-series data. Profile repeatability is an individual repeatability metric that uses the variances at each timepoint, the maximum variance, the number of crossings (lines that cross over each other), and the number of replicates to compute the repeatability score. For more information see Reed et al. (2019) <doi:10.1016/j.ygcen.2018.09.015>.
Win ratio approach to partially ordered data, such as multivariate ordinal responses under product (consensus) or prioritized order. Two-sample tests and multiplicative regression models are implemented (Mao, 2024, under revision).
Pharmacokinetics is the study of drug absorption, distribution, metabolism, and excretion. The pharmacokinetics model explains that how the drug concentration change as the drug moves through the different compartments of the body. For pharmacokinetic modeling and analysis, it is essential to understand the basic pharmacokinetic parameters. All parameters are considered, but only some of parameters are used in the model. Therefore, we need to convert the estimated parameters to the other parameters after fitting the specific pharmacokinetic model. This package is developed to help this converting work. For more detailed explanation of pharmacokinetic parameters, see "Gabrielsson and Weiner" (2007), "ISBN-10: 9197651001"; "Benet and Zia-Amirhosseini" (1995) <DOI: 10.1177/019262339502300203>; "Mould and Upton" (2012) <DOI: 10.1038/psp.2012.4>; "Mould and Upton" (2013) <DOI: 10.1038/psp.2013.14>.
Implementation of class "polyMatrix" for storing a matrix of polynomials and implements basic matrix operations; including a determinant and characteristic polynomial. It is based on the package polynom and uses a lot of its methods to implement matrix operations. This package includes 3 methods of triangularization of polynomial matrices: Extended Euclidean algorithm which is most classical but numerically unstable; Sylvester algorithm based on LQ decomposition; Interpolation algorithm is based on LQ decomposition and Newton interpolation. Both methods are described in D. Henrion & M. Sebek, Reliable numerical methods for polynomial matrix triangularization, IEEE Transactions on Automatic Control (Volume 44, Issue 3, Mar 1999, Pages 497-508) <doi:10.1109/9.751344> and in Salah Labhalla, Henri Lombardi & Roger Marlin, Algorithmes de calcule de la reduction de Hermite d'une matrice a coefficients polynomeaux, Theoretical Computer Science (Volume 161, Issue 1-2, July 1996, Pages 69-92) <doi:10.1016/0304-3975(95)00090-9>.
The 2017 American College of Cardiology and American Heart Association blood pressure guideline recommends using 10-year predicted atherosclerotic cardiovascular disease risk to guide the decision to initiate or intensify antihypertensive medication. The guideline recommends using the Pooled Cohort risk prediction equations to predict 10-year atherosclerotic cardiovascular disease risk. This package implements the original Pooled Cohort risk prediction equations and also incorporates updated versions based on more contemporary data and statistical methods.
This package provides functions to estimate the size-controlled phenotypic integration index, a novel method by Torices & Méndez (2014) <doi:10.1086/676622> to solve problems due to individual size when estimating integration (namely, larger individuals have larger components, which will drive a correlation between components only due to resource availability that might obscure the observed measures of integration). In addition, the package also provides the classical estimation by Wagner (1984) <doi:10.1007/BF00275224>, bootstrapping and jackknife methods to calculate confidence intervals and a significance test for both integration indices. Further details can be found in Torices & Muñoz-Pajares <doi:10.3732/apps.1400104>.
Provide multinomial design methods under intersection-union test (IUT) and union-intersection test (UIT) scheme for Phase II trial. The design types include : Minimax (minimize the maximum sample size), Optimal (minimize the expected sample size), Admissible (minimize the Bayesian risk) and Maxpower (maximize the exact power level).
Puzzle game that can be played in the R console. Restore the pixel art by shifting rows.
Consists of custom wrapper functions using packages openxlsx', flextable', and officer to create highly formatted MS office friendly output of your data frames. These viewer friendly outputs are intended to match expectations of professional looking presentations in business and consulting scenarios. The functions are opinionated in the sense that they expect the input data frame to have certain properties in order to take advantage of the automated formatting.
This package provides tools to print a compact, readable directory tree for a folder or project. The package can automatically detect common project roots (e.g., RStudio .Rproj files) and formats output for quick inspection of code and data organization. It supports typical tree customizations such as limiting depth, excluding files using ignore patterns, and producing clean, aligned text output suitable for console use, reports, and reproducible documentation. A snapshot helper can also render the tree output to a PNG image for sharing in issues, teaching material, or project documentation.
Conduct internal validation of a clinical prediction model for a binary outcome. Produce bias corrected performance metrics (c-statistic, Brier score, calibration intercept/slope) via bootstrap (simple bootstrap, bootstrap optimism, .632 optimism) and cross-validation (CV optimism, CV average). Also includes functions to assess model stability via bootstrap resampling. See Steyerberg et al. (2001) <doi:10.1016/s0895-4356(01)00341-9>; Harrell (2015) <doi:10.1007/978-3-319-19425-7>; Riley and Collins (2023) <doi:10.1002/bimj.202200302>.
Enables computation of epidemiological statistics, including those where counts or mortality rates of the reference population are used. Currently supported: excess hazard models (Dickman, Sloggett, Hills, and Hakulinen (2012) <doi:10.1002/sim.1597>), rates, mean survival times, relative/net survival (in particular the Ederer II (Ederer and Heise (1959)) and Pohar Perme (Pohar Perme, Stare, and Esteve (2012) <doi:10.1111/j.1541-0420.2011.01640.x>) estimators), and standardized incidence and mortality ratios, all of which can be easily adjusted for by covariates such as age. Fast splitting and aggregation of Lexis objects (from package Epi') and other computations achieved using data.table'.
This package provides a shiny app that supports merging of PDF and/or image files with page selection, removal, or rotation options. It is a fast, free, and secure alternative to commercial software or various online websites which require users to sign-up, and it avoids any potential risks associated with uploading files elsewhere.