Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculating Pst values to assess differentiation among populations from a set of quantitative traits is the primary purpose of such a package. The bootstrap method provides confidence intervals and distribution histograms of Pst. Variations of Pst in function of the parameter c/h^2 are studied as well. Finally, the package proposes different transformations especially to eliminate any variation resulting from allometric growth (calculation of residuals from linear regressions, Reist standardizations or Aitchison transformation).
Statistical power simulation for testing the Rasch Model based on a three-way analysis of variance design with mixed classification.
Construct and analyze projection matrix models from a demography study of marked individuals classified by age or stage. The package covers methods described in Matrix Population Models by Caswell (2001) and Quantitative Conservation Biology by Morris and Doak (2002).
An efficient data integration method is provided for multiple spatial transcriptomics data with non-cluster-relevant effects such as the complex batch effects. It unifies spatial factor analysis simultaneously with spatial clustering and embedding alignment, requiring only partially shared cell/domain clusters across datasets. More details can be referred to Wei Liu, et al. (2023) <doi:10.1038/s41467-023-35947-w>.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2014 Household questionnaire data for Punjab, Pakistan (<http://www.mics.unicef.org/surveys>).
Power analysis and sample size determination for moderation, mediation, and moderated mediation in models fitted by structural equation modelling using the lavaan package by Rosseel (2012) <doi:10.18637/jss.v048.i02> or by multiple regression. The package manymome by Cheung and Cheung (2024) <doi:10.3758/s13428-023-02224-z> is used to specify the indirect paths or conditional indirect paths to be tested.
This package contains the functions for construction and visualization of various families of the proximity catch digraphs (PCDs), see (Ceyhan (2005) ISBN:978-3-639-19063-2), for computing the graph invariants for testing the patterns of segregation and association against complete spatial randomness (CSR) or uniformity in one, two and three dimensional cases. The package also has tools for generating points from these spatial patterns. The graph invariants used in testing spatial point data are the domination number (Ceyhan (2011) <doi:10.1080/03610921003597211>) and arc density (Ceyhan et al. (2006) <doi:10.1016/j.csda.2005.03.002>; Ceyhan et al. (2007) <doi:10.1002/cjs.5550350106>). The PCD families considered are Arc-Slice PCDs, Proportional-Edge PCDs, and Central Similarity PCDs.
This package provides a comprehensive suite of tools for analyzing Pakistan's Quarterly National Accounts data. Users can gain detailed insights into Pakistan's economic performance, visualize quarterly trends, and detect patterns and anomalies in key economic indicators. Compare sector contributionsâ including agriculture, industry, and servicesâ to understand their influence on economic growth or decline. Customize analyses by filtering and manipulating data to focus on specific areas of interest. Ideal for policymakers, researchers, and analysts aiming to make informed, data-driven decisions based on timely and detailed economic insights.
Precision agriculture spatial data depuration and homogeneous zones (management zone) delineation. The package includes functions that performs protocols for data cleaning management zone delineation and zone comparison; protocols are described in Paccioretti et al., (2020) <doi:10.1016/j.compag.2020.105556>.
In linear LS regression, calculate for a given design matrix the multiplier K of coefficient standard errors such that the confidence intervals [b - K*SE(b), b + K*SE(b)] have a guaranteed coverage probability for all coefficient estimates b in any submodels after performing arbitrary model selection.
This package provides a framework for defining pipelines of functions for applying data transformations, model estimation and inverse-transformations, resulting in predicted value generation (or model-scoring) functions that automatically apply the entire pipeline of functions required to go from input to predicted output.
This package provides randomization using permutation for applications. To provide a Quality Control (QC) check, QC samples can be randomized within strata. A second function allows for the ability to â switchâ samples to meet set requirements and perform a certain amount of minimization on these switches. The functions are flexible for users by specifying strata size and number of QC samples per strata. The randomization meets the following requirements â ¢ QC sample requirements: QC samples not adjacent, QC samples from same mother must follow certain patterns. â ¢ Matched sample sets must be within a single strata, and next to each other.
Allows biomechanical pressure data from a range of systems to be imported and processed in a reproducible manner. Automatic and manual tools are included to let the user define regions (masks) to be analyzed. Also includes functions for visualizing and animating pressure data. Example methods are described in Shi et al., (2022) <doi:10.1038/s41598-022-19814-0>, Lee et al., (2014) <doi:10.1186/1757-1146-7-18>, van der Zward et al., (2014) <doi:10.1186/1757-1146-7-20>, Najafi et al., (2010) <doi:10.1016/j.gaitpost.2009.09.003>, Cavanagh and Rodgers (1987) <doi:10.1016/0021-9290(87)90255-7>.
This package provides functions to estimate the kinship matrix of individuals from a large set of biallelic SNPs, and extract inbreeding coefficients and the generalized FST (Wright's fixation index). Method described in Ochoa and Storey (2021) <doi:10.1371/journal.pgen.1009241>.
Based on (but not identical to) the no-longer-maintained package phyext', provides enhancements to phylobase classes, specifically for use by package SigTree'; provides classes and methods which help users manipulate branch-annotated trees (as in SigTree'); also provides support for a few other extra features.
Computes optimal changepoint models using the Poisson likelihood for non-negative count data, subject to the PeakSeg constraint: the first change must be up, second change down, third change up, etc. For more info about the models and algorithms, read "Constrained Dynamic Programming and Supervised Penalty Learning Algorithms for Peak Detection" <https://jmlr.org/papers/v21/18-843.html> by TD Hocking et al.
Conducts hierarchical partitioning to calculate individual contributions of phylogenetic tree and predictors (groups) towards total R2 for phylogenetic linear regression models.
This package provides a direct and flexible method for estimating an ICA model. This approach estimates the densities for each component directly via a tilted Gaussian. The tilt functions are estimated via a GAM Poisson model. Details can be found in "Elements of Statistical Learning (2nd Edition)" in Section 14.7.4.
Implementation of class "polyMatrix" for storing a matrix of polynomials and implements basic matrix operations; including a determinant and characteristic polynomial. It is based on the package polynom and uses a lot of its methods to implement matrix operations. This package includes 3 methods of triangularization of polynomial matrices: Extended Euclidean algorithm which is most classical but numerically unstable; Sylvester algorithm based on LQ decomposition; Interpolation algorithm is based on LQ decomposition and Newton interpolation. Both methods are described in D. Henrion & M. Sebek, Reliable numerical methods for polynomial matrix triangularization, IEEE Transactions on Automatic Control (Volume 44, Issue 3, Mar 1999, Pages 497-508) <doi:10.1109/9.751344> and in Salah Labhalla, Henri Lombardi & Roger Marlin, Algorithmes de calcule de la reduction de Hermite d'une matrice a coefficients polynomeaux, Theoretical Computer Science (Volume 161, Issue 1-2, July 1996, Pages 69-92) <doi:10.1016/0304-3975(95)00090-9>.
Inbreeding-purging analysis of pedigreed populations, including the computation of the inbreeding coefficient, partial, ancestral and purged inbreeding coefficients, and measures of the opportunity of purging related to the individual reduction of inbreeding load. In addition, functions to calculate the effective population size and other parameters relevant to population genetics are included. See López-Cortegano E. (2021) <doi:10.1093/bioinformatics/btab599>.
This package provides function declarations and inline function definitions that facilitate cleaning strings in C++ code before passing them to R.
Build and manipulate partially ordered sets (posets), to perform some data analysis on them and to implement multi-criteria decision making procedures. Several efficient ways for generating linear extensions are implemented, together with functions for building mutual ranking probabilities, incomparability, dominance and separation scores (Fattore, M., De Capitani, L., Avellone, A., Suardi, A. (2024). A fuzzy posetic toolbox for multi-criteria evaluation on ordinal data systems. ANNALS OF OPERATIONS RESEARCH <doi:10.1007/s10479-024-06352-3>).
This package contains functions to run propensity-biased allocation to balance covariate distributions in sequential trials and propensity-constrained randomization to balance covariate distributions in trials with known baseline covariates at time of randomization. Currently only supports trials comparing two groups.
This package provides a set of functions designed to calculate the standardised precipitation and standardised precipitation evapotranspiration indices using NASA POWER data as described in Blain et al. (2023) <doi:10.2139/ssrn.4442843>. These indices are calculated using a reference data source. The functions verify if the indices estimates meet the assumption of normality and how well NASA POWER estimates represent real-world data. Indices are calculated in a routine mode. Potential evapotranspiration amounts and the difference between rainfall and potential evapotranspiration are also calculated. The functions adopt a basic time scale that splits each month into four periods. Days 1 to 7, days 8 to 14, days 15 to 21, and days 22 to 28, 29, 30, or 31, where TS=4 corresponds to a 1-month length moving window (calculated 4 times per month) and TS=48 corresponds to a 12-month length moving window (calculated 4 times per month).