Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Efficient calculation of pseudo-ranks and (pseudo)-rank based test statistics. In case of equal sample sizes, pseudo-ranks and mid-ranks are equal. When used for inference mid-ranks may lead to paradoxical results. Pseudo-ranks are in general not affected by such a problem. See Happ et al. (2020, <doi:10.18637/jss.v095.c01>) for details.
This package performs bivariate composite likelihood and full information maximum likelihood estimation for polytomous logit-normit (graded logistic) item response theory (IRT) models.
The Prize-Collecting Steiner Tree problem asks to find a subgraph connecting a given set of vertices with the most expensive nodes and least expensive edges. Since it is proven to be NP-hard, exact and efficient algorithm does not exist. This package provides convenient functionality for obtaining an approximate solution to this problem using loopy belief propagation algorithm.
This package provides a suite of diagnostic tools for univariate point processes. This includes tools for simulating and fitting both common and more complex temporal point processes. We also include functions to visualise these point processes and collect existing diagnostic tools of Brown et al. (2002) <doi:10.1162/08997660252741149> and Wu et al. (2021) <doi:10.1002/9781119821588.ch7>, which can be used to assess the fit of a chosen point process model.
Makes output files from select PreSens Fiber Optic Oxygen Transmitters easier to work with in R. See <http://www.presens.de> for more information about PreSens (Precision Sensing GmbH). Note: this package is neither created nor maintained by PreSens.
This package provides Partial least squares Regression for (weighted) beta regression models (Bertrand 2013, <https://ojs-test.apps.ocp.math.cnrs.fr/index.php/J-SFdS/article/view/215>) and k-fold cross-validation of such models using various criteria. It allows for missing data in the explanatory variables. Bootstrap confidence intervals constructions are also available.
This package provides functionality for calculating pregnancy-related dates and tracking medications during pregnancy and fertility treatment. Calculates due dates from various starting points including last menstrual period and IVF (In Vitro Fertilisation) transfer dates, determines pregnancy progress on any given date, and identifies when specific pregnancy weeks are reached. Includes medication tracking capabilities for individuals undergoing fertility treatment or during pregnancy, allowing users to monitor remaining doses and quantities needed over specified time periods. Designed for those tracking their own pregnancies or supporting partners through the process, making use of options to personalise output messages. For details on due date calculations, see <https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2017/05/methods-for-estimating-the-due-date>.
Confidence intervals and point estimation for R under various parametric model assumptions; likelihood inference based on classical first-order approximations and higher-order asymptotic procedures.
Two-sample power-enhanced mean tests, covariance tests, and simultaneous tests on mean vectors and covariance matrices for high-dimensional data. Methods of these PE tests are presented in Yu, Li, and Xue (2022) <doi:10.1080/01621459.2022.2126781>; Yu, Li, Xue, and Li (2022) <doi:10.1080/01621459.2022.2061354>.
Quantile regression with fixed effects is a general model for longitudinal data. Here we proposed to solve it by several methods. The estimation methods include three loss functions as check, asymmetric least square and asymmetric Huber functions; and three structures as simple regression, fixed effects and fixed effects with penalized intercepts by LASSO.
Data files and documentation for PEDiatric vALidation oF vAriableS in TBI (PEDALFAST). The data was used in "Functional Status Scale in Children With Traumatic Brain Injury: A Prospective Cohort Study" by Bennett, Dixon, et al (2016) <doi:10.1097/PCC.0000000000000934>.
Given k populations (can be in thousands), what is the probability that a given subset of size t contains the true top t populations? This package finds this probability and offers three tuning parameters (G, d, L) to relax the definition.
Levels and changes of productivity and profitability are measured with various indices. The package contains the multiplicatively complete Färe-Primont, Fisher, Hicks-Moorsteen, Laspeyres, Lowe, and Paasche indices, as well as the classic Malmquist productivity index. Färe-Primont and Lowe indices verify the transitivity property and can therefore be used for multilateral or multitemporal comparison. Fisher, Hicks-Moorsteen, Laspeyres, Malmquist, and Paasche indices are not transitive and are only to be used for binary comparison. All indices can also be decomposed into different components, providing insightful information on the sources of productivity and profitability changes. In the use of Malmquist productivity index, the technological change index can be further decomposed into bias technological change components. The package also allows to prohibit technological regression (negative technological change). In the case of the Fisher, Hicks-Moorsteen, Laspeyres, Paasche and the transitive Färe-Primont and Lowe indices, it is furthermore possible to rule out technological change. Deflated shadow prices can also be obtained. Besides, the package allows parallel computing as an option, depending on the user's computer configuration. All computations are carried out with the nonparametric Data Envelopment Analysis (DEA), and several assumptions regarding returns to scale are available. All DEA linear programs are implemented using lp_solve'.
This package provides tools for processing, analyzing, and visualizing spectral data collected from 3D laser-based scanning systems. Supports applications in agriculture, forestry, environmental monitoring, industrial quality control, and biomedical research. Enables evaluation of plant growth, productivity, resource efficiency, disease management, and pest monitoring. Includes statistical methods for extracting insights from multispectral and hyperspectral data and generating publication-ready visualizations. See Zieschank & Junker (2023) <doi:10.3389/fpls.2023.1141554> and Saric et al. (2022) <doi:10.1016/J.TPLANTS.2021.12.003> for related work.
An alternative data structure and visual rendering for the profiling information generated by Rprof.
It creates a lattice plot to visualize panel or longitudinal data. The observed values are plotted as dots and the fitted values as lines, both against time. The plot is customizable and easy to edit, even if you do not know how to construct a lattice plot from scratch.
This package provides tools for statistical testing of correlation coefficients through robust permutation method and large sample approximation method. Tailored to different types of correlation coefficients including Pearson correlation coefficient, weighted Pearson correlation coefficient, Spearman correlation coefficient, and Lin's concordance correlation coefficient.The robust permutation test controls type I error under general scenarios when sample size is small and two variables are dependent but uncorrelated. The large sample approximation test generally controls type I error when the sample size is large (>200).
This package provides data sets and functions for exploration of Pakistan Population Census 2023 (<https://www.pbs.gov.pk/>).
This package provides a unified method, called M statistic, is provided for detecting phylogenetic signals in continuous traits, discrete traits, and multi-trait combinations. Blomberg and Garland (2002) <doi:10.1046/j.1420-9101.2002.00472.x> provided a widely accepted statistical definition of the phylogenetic signal, which is the "tendency for related species to resemble each other more than they resemble species drawn at random from the tree". The M statistic strictly adheres to the definition of phylogenetic signal, formulating an index and developing a method of testing in strict accordance with the definition, instead of relying on correlation analysis or evolutionary models. The novel method equivalently expressed the textual definition of the phylogenetic signal as an inequality equation of the phylogenetic and trait distances and constructed the M statistic. The M statistic implemented in this package is based on the methodology described in Yao and Yuan (2025) <doi:10.1002/ece3.71106>. If you use this method in your research, please cite the paper.
Given a data matrix with rows representing data vectors and columns representing variables, produces a directed polytree for the underlying causal structure. Based on the algorithm developed in Chatterjee and Vidyasagar (2022) <arxiv:2209.07028>. The method is fully nonparametric, making no use of linearity assumptions, and especially useful when the number of variables is large.
This package contains three simulation functions for implementing the entire Phase 123 trial and the separate Eff-Tox and Phase 3 portions of the trial, which may be beneficial for use on clusters. The functions AssignEffTox() and RandomizeEffTox() assign doses to patient cohorts during phase 12 and Reoptimize() determines the optimal dose to continue with during Phase 3. The functions ReturnMeansAgent() and ReturnMeanControl() gives the true mean survival for the agent doses and control and ReturnOCS() gives the operating characteristics of the design.
This package provides the probability, distribution, and quantile functions and random number generator for the Poisson-Binomial distribution. This package relies on FFTW to implement the discrete Fourier transform, so that it is much faster than the existing implementation of the same algorithm in R.
This package provides a set of raw datasets used to create SDTM domains in pharmaversesdtm package.
Bivariate additive categorical regression via penalized maximum likelihood. Under a multinomial framework, the method fits bivariate models where both responses are nominal, ordinal, or a mix of the two. Partial proportional odds models are supported, with flexible (non-)uniform association structures. Various logit types and parametrizations can be specified for both marginals and the association, including Daleâ s model. The association structure can be regularized using polynomial-type penalty terms. Additive effects are modeled using P-splines. Standard methods such as summary(), residuals(), and predict() are available.