Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Constructors of waveband objects for commonly used biological spectral weighting functions (BSWFs) and for different wavebands describing named ranges of wavelengths in the ultraviolet (UV), visible (VIS) and infrared (IR) regions of the electromagnetic spectrum. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
This package provides functions used for analyzing count data, mostly crime counts. Includes checking difference in two Poisson counts (e-test), checking the fit for a Poisson distribution, small sample tests for counts in bins, Weighted Displacement Difference test (Wheeler and Ratcliffe, 2018) <doi:10.1186/s40163-018-0085-5>, to evaluate crime changes over time in treated/control areas. Additionally includes functions for aggregating spatial data and spatial feature engineering.
This package provides functions to setup a personal R package that attaches given libraries and exports personal helper functions.
Providing functions to diagnose and make inferences from various linear models, such as those obtained from aov', lm', glm', gls', lme', lmer', glmmTMB and semireg'. Inferences include predicted means and standard errors, contrasts, multiple comparisons, permutation tests, adjusted R-square and graphs.
Fast exponentiation when the exponent is an integer.
This package provides a standardized framework to support the selection and evaluation of parametric survival models for time-to-event data. Includes tools for visualizing survival data, checking proportional hazards assumptions (Grambsch and Therneau, 1994, <doi:10.1093/biomet/81.3.515>), comparing parametric (Ishak and colleagues, 2013, <doi:10.1007/s40273-013-0064-3>), spline (Royston and Parmar, 2002, <doi:10.1002/sim.1203>) and cure models, examining hazard functions, and evaluating model extrapolation. Methods are consistent with recommendations in the NICE Decision Support Unit Technical Support Documents (14 and 21 <https://sheffield.ac.uk/nice-dsu/tsds/survival-analysis>). Results are structured to facilitate integration into decision-analytic models, and reports can be generated with rmarkdown'. The package builds on existing tools including flexsurv (Jackson, 2016, <doi:10.18637/jss.v070.i08>)) and flexsurvcure for estimating cure models.
Reads/write binary genotype file compatible with PLINK <https://www.cog-genomics.org/plink/1.9/input#bed> into/from a R matrix; traverse genotype data one windows of variants at a time, like apply() or a for loop; reads/writes genotype relatedness/kinship matrices created by PLINK <https://www.cog-genomics.org/plink/1.9/distance#make_rel> or GCTA <https://cnsgenomics.com/software/gcta/#MakingaGRM> into/from a R square matrix. It is best used for bringing data produced by PLINK and GCTA into R workflow.
Simulation of species diversification, fossil records, and phylogenies. While the literature on species birth-death simulators is extensive, including important software like paleotree and APE', we concluded there were interesting gaps to be filled regarding possible diversification scenarios. Here we strove for flexibility over focus, implementing a large array of regimens for users to experiment with and combine. In this way, paleobuddy can be used in complement to other simulators as a flexible jack of all trades, or, in the case of scenarios implemented only here, can allow for robust and easy simulations for novel situations. Environmental data modified from that in RPANDA': Morlon H. et al (2016) <doi:10.1111/2041-210X.12526>.
This tool computes the probability of detection (POD) curve and the limit of detection (LOD), i.e. the number of copies of the target DNA sequence required to ensure a 95 % probability of detection (LOD95). Other quantiles of the LOD can be specified. This is a reimplementation of the mathematical-statistical modelling of the validation of qualitative polymerase chain reaction (PCR) methods within a single laboratory as provided by the commercial tool PROLab <http://quodata.de/>. The modelling itself has been described by Uhlig et al. (2015) <doi:10.1007/s00769-015-1112-9>.
It provides tools for conducting performance attribution for equity portfolios. The package uses two methods: the Brinson method and a regression-based analysis.
Generates multivariate data with count and continuous variables with a pre-specified correlation matrix. The count and continuous variables are assumed to have Poisson and normal marginals, respectively. The data generation mechanism is a combination of the normal to anything principle and a connection between Poisson and normal correlations in the mixture. The details of the method are explained in Yahav et al. (2012) <DOI:10.1002/asmb.901>.
An easy-to-use tool for implementing Neural Ordinary Differential Equations (NODEs) in pharmacometric software such as Monolix', NONMEM', and nlmixr2', see Bräm et al. (2024) <doi:10.1007/s10928-023-09886-4> and Bräm et al. (2025) <doi:10.1002/psp4.13265>. The main functionality is to automatically generate structural model code describing computations within a neural network. Additionally, parameters and software settings can be initialized automatically. For using these additional functionalities with Monolix', pmxNODE interfaces with MonolixSuite via the lixoftConnectors package. The lixoftConnectors package is distributed with MonolixSuite (<https://monolixsuite.slp-software.com/r-functions/2024R1/package-lixoftconnectors>) and is not available from public repositories.
Shrinkage estimator for polygenic risk prediction (PRS) models based on summary statistics of genome-wide association (GWA) studies. Based upon the methods and original PANPRS package as found in: Chen, Chatterjee, Landi, and Shi (2020) <doi:10.1080/01621459.2020.1764849>.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Household questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of Sustainable Development Goals (SDGs) monitoring, as the survey produces information on 32 global Sustainable Development Goals (SDGs) indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using probability proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).
Investigate (analytically or visually) the inputs and outputs of probabilistic analyses of health economic models using standard health economic visualisation and metamodelling methods.
This package provides methods for reducing the number of features within a data set. See Bauer JO (2021) <doi:10.1145/3475827.3475832> and Bauer JO, Drabant B (2021) <doi:10.1016/j.jmva.2021.104754> for more information on principal loading analysis.
This package provides a number of functions to simplify and automate the scoring, comparison, and evaluation of different ways of creating composites of data. It is particularly aimed at facilitating the creation of physiological composites of metabolic syndrome symptom score (MetSSS) and allostatic load (AL). Provides a wrapper to calculate the MetSSS on new data using the Healthy Hearts formula.
Implement surrogate-assisted feature extraction (SAFE) and common machine learning approaches to train and validate phenotyping models. Background and details about the methods can be found at Zhang et al. (2019) <doi:10.1038/s41596-019-0227-6>, Yu et al. (2017) <doi:10.1093/jamia/ocw135>, and Liao et al. (2015) <doi:10.1136/bmj.h1885>.
Build piecewise exponential survival model for study design (planning) and event/timeline prediction.
Predicts the most common race of a surname and based on U.S. Census data, and the most common first named based on U.S. Social Security Administration data.
Applies phylogenetic comparative methods (PCM) and phylogenetic trait imputation using structural equation models (SEM), extending methods from Thorson et al. (2023) <doi:10.1111/2041-210X.14076>. This implementation includes a minimal set of features, to allow users to easily read all of the documentation and source code. PCM using SEM includes phylogenetic linear models and structural equation models as nested submodels, but also allows imputation of missing values. Features and comparison with other packages are described in Thorson and van der Bijl (2023) <doi:10.1111/jeb.14234>.
An implementation of Bayesian single-arm phase II design methods for binary outcome based on posterior probability (Thall and Simon (1994) <doi:10.2307/2533377>) and predictive probability (Lee and Liu (2008) <doi:10.1177/1740774508089279>).
Construct parser combinator functions, higher order functions that parse input. Construction of such parsers is transparent and easy. Their main application is the parsing of structured text files like those generated by laboratory instruments. Based on a paper by Hutton (1992) <doi:10.1017/S0956796800000411>.
The constructs used to study the human psychology have many definitions and corresponding instructions for eliciting and coding qualitative data pertaining to constructs content and for measuring the constructs. This plethora of definitions and instructions necessitates unequivocal reference to specific definitions and instructions in empirical and secondary research. This package implements a human- and machine-readable standard for specifying construct definitions and instructions for measurement and qualitative research based on YAML'. This standard facilitates systematic unequivocal reference to specific construct definitions and corresponding instructions in a decentralized manner (i.e. without requiring central curation; Peters (2020) <doi:10.31234/osf.io/xebhn>).