Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extends the S3 generic function knit_print() in knitr to automatically print some objects using an appropriate format such as Markdown or LaTeX. For example, data frames are automatically printed as tables, and the help() pages can also be rendered in knitr documents.
Preparing a scanner data set for price dynamics calculations (data selecting, data classification, data matching, data filtering). Computing bilateral and multilateral indexes. For details on these methods see: Diewert and Fox (2020) <doi:10.1080/07350015.2020.1816176>, BiaÅ ek (2019) <doi:10.2478/jos-2019-0014> or BiaÅ ek (2020) <doi:10.2478/jos-2020-0037>.
This package provides a comprehensive library for colour vectors and colour palettes using a new family of colour classes (palettes_colour and palettes_palette) that always print as hex codes with colour previews. Capabilities include: formatting, casting and coercion, extraction and updating of components, plotting, colour mixing arithmetic, and colour interpolation.
This package provides a simple interface for extracting various elements from the publicly available PubMed XML files, incorporating PubMed's regular updates, and combining the data with the NIH Open Citation Collection. See Schoenbachler and Hughey (2021) <doi:10.7717/peerj.11071>.
This package creates PRISMA <http://prisma-statement.org/> diagram from a minimal dataset of included and excluded studies and allows for more custom diagrams. PRISMA diagrams are used to track the identification, screening, eligibility, and inclusion of studies in a systematic review.
The function pointdensity returns a density count and the temporal average for every point in the original list. The dataframe returned includes four columns: lat, lon, count, and date_avg. The "lat" column is the original latitude data; the "lon" column is the original longitude data; the "count" is the density count of the number of points within a radius of radius*grid_size (the neighborhood); and the date_avg column includes the average date of each point in the neighborhood.
This package implements permutation tests for any test statistic and randomization scheme and constructs associated confidence intervals as described in Glazer and Stark (2024) <doi:10.48550/arXiv.2405.05238>.
This package provides a suite of multivariate methods and data visualization tools to implement profile analysis and cross-validation techniques described in Davison & Davenport (2002) <DOI: 10.1037/1082-989X.7.4.468>, Bulut (2013), and other published and unpublished resources. The package includes routines to perform criterion-related profile analysis, profile analysis via multidimensional scaling, moderated profile analysis, profile analysis by group, and a within-person factor model to derive score profiles.
The Prognostic Regression Offsets with Propagation of ERrors (for Treatment Effect Estimation) package facilitates direct adjustment for experiments and observational studies that is compatible with a range of study designs and covariance adjustment strategies. It uses explicit specification of clusters, blocks and treatment allocations to furnish probability of assignment-based weights targeting any of several average treatment effect parameters, and for standard error calculations reflecting these design parameters. For covariance adjustment of its Hajek and (one-way) fixed effects estimates, it enables offsetting the outcome against predictions from a dedicated covariance model, with standard error calculations propagating error as appropriate from the covariance model.
This package provides a package for selecting the most relevant features (genes) in the high-dimensional binary classification problems. The discriminative features are identified using analyzing the overlap between the expression values across both classes. The package includes functions for measuring the proportional overlapping score for each gene avoiding the outliers effect. The used measure for the overlap is the one defined in the "Proportional Overlapping Score (POS)" technique for feature selection. A gene mask which represents a gene's classification power can also be produced for each gene (feature). The set size of the selected genes might be set by the user. The minimum set of genes that correctly classify the maximum number of the given tissue samples (observations) can be also produced.
Simplifies the manufacturing, analysis and display of pressure volume and leaf drying curves. From the progression of the curves turgor loss point, osmotic potential, apoplastic fraction as well as minimum conductance and stomatal closure can be derived. Methods adapted from Bartlett, Scoffoni, Sack (2012) <doi:10.1111/j.1461-0248.2012.01751.x> and Sack, Scoffoni, PrometheusWikiContributors (2011) <http://prometheuswiki.org/tiki-index.php?page=Minimum+epidermal+conductance+%28gmin%2C+a.k.a.+cuticular+conductance%29>.
Nonparametric density estimation for (hyper)spherical data by means of a parametrically guided kernel estimator (Alonso-Pena et al. (2024) <doi:10.1111/sjos.12737>. The package also allows the data-driven selection of the smoothing parameter and the representation of the estimated density for circular and spherical data. Estimators of the density without guide can also be obtained.
The population proportion using group testing can be estimated by different methods. Four functions including p.mle(), p.gart(), p.burrow() and p.order() are provided to implement four estimating methods including the maximum likelihood estimate, Gart's estimate, Burrow's estimate, and order statistic estimate.
This package implements fast, safe, and customizable assertions routines, which can be used in place of base::stopifnot().
This package implements piecewise structural equation modeling from a single list of structural equations, with new methods for non-linear, latent, and composite variables, standardized coefficients, query-based prediction and indirect effects. See <http://jslefche.github.io/piecewiseSEM/> for more.
Provide summary table of daily physical activity and per-person/grouped heat map for accelerometer data from SenseWear Armband. See <https://templehealthcare.wordpress.com/the-sensewear-armband/> for more information about SenseWear Armband.
Normalizes city names for Germany (DE) and Switzerland (CH) and matches them to NUTS 3 regions using provided crosswalks. Features include comprehensive normalization rules, cascading matching logic (Exact NUTS -> Exact LAU -> Fuzzy), and single-source data synthesis. The package implements the NUTS classification as described in the NUTS methodology (Eurostat (2021) <https://ec.europa.eu/eurostat/web/nuts>).
Google Pathways Language Model 2 (PaLM 2) as a coding and writing assistant designed for R'. With a range of functions, including natural language processing and coding optimization, to assist R developers in simplifying tedious coding tasks and content searching.
Is designed to make easier printing summary statistics (for continues and factor level) tables in Latex, and plotting by factor.
The t-designs represent a generalized class of balanced incomplete block designs in which the number of blocks in which any t-tuple of treatments (t >= 2) occur together is a constant. When the focus of an experiment lies in grading and selecting treatment subgroups, t-designs would be preferred over the conventional ones, as they have the additional advantage of t-tuple balance. t-designs can be advantageously used in identifying the best crop-livestock combination for a particular location in Integrated Farming Systems that will help in generating maximum profit. But as the number of components increases, the number of possible t-component combinations will also increase. Most often, combinations derived from specific components are only practically feasible, for example, in a specific locality, farmers may not be interested in keeping a pig or goat and hence combinations involving these may not be of any use in that locality. In such situations partially balanced t-designs with few selected combinations appearing in a constant number of blocks (while others not at all appearing) may be useful (Sayantani Karmakar, Cini Varghese, Seema Jaggi & Mohd Harun (2021)<doi:10.1080/03610918.2021.2008436>). Further, every location may not have the resources to form equally sized homogeneous blocks. Partially balanced t-designs with unequal block sizes (Damaraju Raghavarao & Bei Zhou (1998)<doi:10.1080/03610929808832657>. Sayantani Karmakar, Cini Varghese, Seema Jaggi & Mohd Harun (2022)." Partially Balanced t-designs with unequal block sizes") prove to be more suitable for such situations.This package generates three series of partially balanced t-designs namely Series 1, Series 2 and Series 3. Series 1 and Series 2 are designs having equal block sizes and with treatment structures 4(t + 1) and a prime number, respectively. Series 3 consists of designs with unequal block sizes and with treatment structure n(n-1)/2. This package is based on the function named PBtD() for generating partially balanced t-designs along with their parameters, information matrices, average variance factors and canonical efficiency factors.
Estimates power, minimum detectable effect size (MDES) and sample size requirements. The context is multilevel randomized experiments with multiple outcomes. The estimation takes into account the use of multiple testing procedures. Development of this package was supported by a grant from the Institute of Education Sciences (R305D170030). For a full package description, including a detailed technical appendix, see <doi:10.18637/jss.v108.i06>.
Defines functions to describe regression models using only pre-computed summary statistics (i.e. means, variances, and covariances) in place of individual participant data. Possible models include linear models for linear combinations, products, and logical combinations of phenotypes. Implements methods presented in Wolf et al. (2021) <doi:10.3389/fgene.2021.745901> Wolf et al. (2020) <doi:10.1142/9789811215636_0063> and Gasdaska et al. (2019) <doi:10.1142/9789813279827_0036>.
Perform classic chi-squared tests and Ripol et al(1999) binomial confidence interval approach for autopolyploid dominant markers. Also, dominant markers may be generated for families of offspring where either one or both of the parents possess the marker. Missing values and misclassified markers may be generated at random.
This package provides functions for reading, and in some cases writing, foreign files containing spectral data from spectrometers and their associated software, output from daylight simulation models in common use, and some spectral data repositories. As well as functions for exchange of spectral data with other R packages. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.