Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools that allow developers to write functions for prediction error estimation with minimal programming effort and assist users with model selection in regression problems.
Calculates seat allocation using the D-Hondt method, Sainte-Lague method, and Modified Sainte-Lague method, all commonly used in proportional representation electoral systems. For more information on these methods, see Michael Gallagher (1991)<doi:10.1016/0261-3794(91)90004-C>.
This package provides functions to get prediction intervals and prediction points of future observations from any continuous distribution.
Can be used to carry out permutation based gene expression pathway analysis. This work was supported by a National Institute of Allergy and Infectious Disease/National Institutes of Health contract (No. HHSN272200900059C).
This package performs elementary probability calculations on finite sample spaces, which may be represented by data frames or lists. This package is meant to rescue some widely used functions from the archived prob package (see <https://cran.r-project.org/src/contrib/Archive/prob/>). Functionality includes setting up sample spaces, counting tools, defining probability spaces, performing set algebra, calculating probability and conditional probability, tools for simulation and checking the law of large numbers, adding random variables, and finding marginal distributions. Characteristic functions for all base R distributions are included.
Create hexagonal shape sticker image. polaroid can be used in user's web browser. polaroid can be used in shinyapps.io'. In both way, user can download created hexSticker as PNG image. polaroid is built based on argonDash', colourpicker and hexSticker R package.
Builds and runs c++ code for classes that encapsulate state space model, particle filtering algorithm pairs. Algorithms include the Bootstrap Filter from Gordon et al. (1993) <doi:10.1049/ip-f-2.1993.0015>, the generic SISR filter, the Auxiliary Particle Filter from Pitt et al (1999) <doi:10.2307/2670179>, and a variety of Rao-Blackwellized particle filters inspired by Andrieu et al. (2002) <doi:10.1111/1467-9868.00363>. For more details on the c++ library pf', see Brown (2020) <doi:10.21105/joss.02599>.
Parsimonious Ultrametric Gaussian Mixture Models via grouped coordinate ascent (equivalent to EM) algorithm characterized by the inspection of hierarchical relationships among variables via parsimonious extended ultrametric covariance structures. The methodologies are described in Cavicchia, Vichi, Zaccaria (2024) <doi:10.1007/s11222-024-10405-9>, (2022) <doi:10.1007/s11634-021-00488-x> and (2020) <doi:10.1007/s11634-020-00400-z>.
This package provides functionality for calculating pregnancy-related dates and tracking medications during pregnancy and fertility treatment. Calculates due dates from various starting points including last menstrual period and IVF (In Vitro Fertilisation) transfer dates, determines pregnancy progress on any given date, and identifies when specific pregnancy weeks are reached. Includes medication tracking capabilities for individuals undergoing fertility treatment or during pregnancy, allowing users to monitor remaining doses and quantities needed over specified time periods. Designed for those tracking their own pregnancies or supporting partners through the process, making use of options to personalise output messages. For details on due date calculations, see <https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2017/05/methods-for-estimating-the-due-date>.
Fits penalized generalized estimating equations to longitudinal data with high-dimensional covariates.
This package provides access to word predictability estimates using large language models (LLMs) based on transformer architectures via integration with the Hugging Face ecosystem <https://huggingface.co/>. The package interfaces with pre-trained neural networks and supports both causal/auto-regressive LLMs (e.g., GPT-2') and masked/bidirectional LLMs (e.g., BERT') to compute the probability of words, phrases, or tokens given their linguistic context. For details on GPT-2 and causal models, see Radford et al. (2019) <https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf>, for details on BERT and masked models, see Devlin et al. (2019) <doi:10.48550/arXiv.1810.04805>. By enabling a straightforward estimation of word predictability, the package facilitates research in psycholinguistics, computational linguistics, and natural language processing (NLP).
Power calculations are a critical component of any research study to determine the minimum sample size necessary to detect differences between multiple groups. Here we present an R package, PASSED', that performs power and sample size calculations for the test of two-sample means or ratios with data following beta, gamma (Chang et al. (2011), <doi:10.1007/s00180-010-0209-1>), normal, Poisson (Gu et al. (2008), <doi:10.1002/bimj.200710403>), binomial, geometric, and negative binomial (Zhu and Lakkis (2014), <doi:10.1002/sim.5947>) distributions.
Presentation of distributions such as: two-piece power normal (TPPN), plasticizing component (PC), DS normal (DSN), expnormal (EN), Sulewski plasticizing component (SPC), easily changeable kurtosis (ECK) distributions. Density, distribution function, quantile function and random generation are presented. For details on this method see: Sulewski (2019) <doi:10.1080/03610926.2019.1674871>, Sulewski (2021) <doi:10.1080/03610926.2020.1837881>, Sulewski (2021) <doi:10.1134/S1995080221120337>, Sulewski (2022) <"New members of the Johnson family of probability dis-tributions: properties and application">, Sulewski, Volodin (2022) <doi:10.1134/S1995080222110270>, Sulewski (2023) <doi:10.17713/ajs.v52i3.1434>.
ProTracker is a popular music tracker to sequence music on a Commodore Amiga machine. This package offers the opportunity to import, export, manipulate and play ProTracker module files. Even though the file format could be considered archaic, it still remains popular to this date. This package intends to contribute to this popularity and therewith keeping the legacy of ProTracker and the Commodore Amiga alive. This package is the successor of ProTrackR providing better performance.
Carrying out inferences about any linear combination of proportions and the ratio of two proportions.
This package provides functions are available to calibrate designs over a range of posterior and predictive thresholds, to plot the various design options, and to obtain the operating characteristics of optimal accuracy and optimal efficiency designs.
This package provides methods to calculate and present PHENTHAUproc', an early warning and decision support system for hazard assessment and control of oak processionary moth (OPM) using local and spatial temperature data. It was created by Halbig et al. 2024 (<doi:10.1016/j.foreco.2023.121525>) at FVA (<https://www.fva-bw.de/en/homepage/>) Forest Research Institute Baden-Wuerttemberg, Germany and at BOKU - University of Natural Ressources and Life Sciences, Vienna, Austria.
Implementations of several methods for principal component analysis using the L1 norm. The package depends on COIN-OR Clp version >= 1.17.4. The methods implemented are PCA-L1 (Kwak 2008) <DOI:10.1109/TPAMI.2008.114>, L1-PCA (Ke and Kanade 2003, 2005) <DOI:10.1109/CVPR.2005.309>, L1-PCA* (Brooks, Dula, and Boone 2013) <DOI:10.1016/j.csda.2012.11.007>, L1-PCAhp (Visentin, Prestwich and Armagan 2016) <DOI:10.1007/978-3-319-46227-1_37>, wPCA (Park and Klabjan 2016) <DOI: 10.1109/ICDM.2016.0054>, awPCA (Park and Klabjan 2016) <DOI: 10.1109/ICDM.2016.0054>, PCA-Lp (Kwak 2014) <DOI:10.1109/TCYB.2013.2262936>, and SharpEl1-PCA (Brooks and Dula, submitted).
This package provides a tool which aims to help evaluate the effect of external borrowing using an integrated approach described in Lewis et al., (2019) <doi:10.1080/19466315.2018.1497533> that combines propensity score and Bayesian dynamic borrowing methods.
Generates multivariate data with count and continuous variables with a pre-specified correlation matrix. The count and continuous variables are assumed to have Poisson and normal marginals, respectively. The data generation mechanism is a combination of the normal to anything principle and a connection between Poisson and normal correlations in the mixture. The details of the method are explained in Yahav et al. (2012) <DOI:10.1002/asmb.901>.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Household questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of SDG monitoring, as the survey produces information on 32 global SDG indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using Probability Proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).
Applying the global sensitivity analysis workflow to investigate the parameter uncertainty and sensitivity in physiologically based kinetic (PK) models, especially the physiologically based pharmacokinetic/toxicokinetic model with multivariate outputs. The package also provides some functions to check the convergence and sensitivity of model parameters. The workflow was first mentioned in Hsieh et al., (2018) <doi:10.3389/fphar.2018.00588>, then further refined (Hsieh et al., 2020 <doi:10.1016/j.softx.2020.100609>).
This package provides a set of tools to install, manage and run several Pandoc versions.
An R-Shiny application implementing a method of sexing the human os coxae based on logistic regressions and Bruzek's nonmetric traits <doi:10.1002/ajpa.23855>.