Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a doubly robust precision medicine approach to fit, cross-validate and visualize prediction models for the conditional average treatment effect (CATE). It implements doubly robust estimation and semiparametric modeling approach of treatment-covariate interactions as proposed by Yadlowsky et al. (2020) <doi:10.1080/01621459.2020.1772080>.
Recent years have seen an increased interest in novel methods for analyzing quantitative data from experimental psychology. Currently, however, they lack an established and accessible software framework. Many existing implementations provide no guidelines, consisting of small code snippets, or sets of packages. In addition, the use of existing packages often requires advanced programming experience. PredPsych is a user-friendly toolbox based on machine learning predictive algorithms. It comprises of multiple functionalities for multivariate analyses of quantitative behavioral data based on machine learning models.
Text mining of PubMed Abstracts (text and XML) from <https://pubmed.ncbi.nlm.nih.gov/>.
Fits the Poisson-Tweedie generalized linear mixed model described in Signorelli et al. (2021, <doi:10.1177/1471082X20936017>). Likelihood approximation based on adaptive Gauss Hermite quadrature rule.
Fits and evaluates three-state partitioned survival analyses (PartSAs) and Markov models (clock forward or clock reset) to progression and overall survival data typically collected in oncology clinical trials. These model structures are typically considered in cost-effectiveness modeling in advanced/metastatic cancer indications. Muston (2024). "Informing structural assumptions for three state oncology cost-effectiveness models through model efficiency and fit". Applied Health Economics and Health Policy.
Data for the extraterrestrial solar spectral irradiance and ground level solar spectral irradiance and irradiance. In addition data for shade light under vegetation and irradiance time series from different broadband sensors. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
This package provides functions to perform paternity exclusion via allele matching, in autopolyploid species having ploidy 4, 6, or 8. The marker data used can be genotype data (copy numbers known) or allelic phenotype data (copy numbers not known).
The PROMETHEE method is a multi-criteria decision-making method addressing with outranking problems. The method establishes a preference structure between the alternatives, having a preference function for each criterion. IN this context, three variants of the method is carried out: PROMETHEE I (Partial Outranking), PROMETHEE II (Total Outranking), and PROMETHEE III (Outranking by Intervals).
This package contains various tools for conveniently downloading and editing taxon-specific datasets from the Paleobiology Database <https://paleobiodb.org>, extracting information on abundance, temporal distribution of subtaxa and taxonomic diversity through deep time, and visualizing these data in relation to phylogeny and stratigraphy.
This package provides tools for performing disproportionality analysis using the information component, proportional reporting rate and the reporting odds ratio. The anticipated use is passing data to the da() function, which executes the disproportionality analysis. See Norén et al (2011) <doi:10.1177/0962280211403604> and Montastruc et al (2011) <doi:10.1111/j.1365-2125.2011.04037.x> for further details.
Connect R to the PhotosynQ platform (<https://photosynq.org>). It allows to login and logout, as well as receive project information and project data. Further it transforms the received JSON objects into a data frame, which can be used for the final data analysis.
POM-aSPU test evaluates an association between an ordinal response and multiple phenotypes, for details see Kim and Pan (2017) <DOI:10.1002/gepi.22033>.
Calculate the Bayesian posterior/predictive probability and determine the sample size and stopping boundaries for single-arm Phase II design.
It allows the user to determine sample sizes, select probabilistic samples, make estimates of different parameters for the total finite population and in studio domains, using the main design drawings.
It is often useful when developing an R package to track the relationship between functions in order to appropriately test and track changes. This package generates a graph of the relationship between all R functions in a package. It can also be used on any directory containing .R files which can be very useful for shiny apps or other non-package workflows.
This package provides a novel tool for generating a piecewise constant estimation list of increasingly complex predictors based on an intensive and comprehensive search over the entire covariate space.
This package provides a set of tools to extract bibliographic content from PubMed database using NCBI REST API <https://www.ncbi.nlm.nih.gov/home/develop/api/>.
Constructors of waveband objects for commonly used biological spectral weighting functions (BSWFs) and for different wavebands describing named ranges of wavelengths in the ultraviolet (UV), visible (VIS) and infrared (IR) regions of the electromagnetic spectrum. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
This package provides a set of basic tools for generating, analyzing, summarizing and visualizing finite partially ordered sets. In particular, it implements flexible and very efficient algorithms for the extraction of linear extensions and for the computation of mutual ranking probabilities and other user-defined functionals, over them. The package is meant as a computationally efficient "engine", for the implementation of data analysis procedures, on systems of multidimensional ordinal indicators and partially ordered data, in the spirit of Fattore, M. (2016) "Partially ordered sets and the measurement of multidimensional ordinal deprivation", Social Indicators Research <DOI:10.1007/s11205-015-1059-6>, and Fattore M. and Arcagni, A. (2018) "A reduced posetic approach to the measurement of multidimensional ordinal deprivation", Social Indicators Research <DOI:10.1007/s11205-016-1501-4>.
This package provides a framework for defining pipelines of functions for applying data transformations, model estimation and inverse-transformations, resulting in predicted value generation (or model-scoring) functions that automatically apply the entire pipeline of functions required to go from input to predicted output.
Extends ggplot2 to help replace points in a scatter plot with pie-chart glyphs showing the relative proportions of different categories. The pie glyphs are independent of the axes and plot dimensions, to prevent distortions when the plot dimensions are changed.
This package implements novel tools for estimating sample sizes needed for phylogenetic studies, including studies focused on estimating the probability of true pathogen transmission between two cases given phylogenetic linkage and studies focused on tracking pathogen variants at a population level. Methods described in Wohl, Giles, and Lessler (2021) and in Wohl, Lee, DiPrete, and Lessler (2023).
Data and statistics of Pakistan Social and Living Standards Measurement (PSLM) survey 2014-15 from Pakistan Bureau of Statistics (<http://www.pbs.gov.pk/>).
Computes penalized regression calibration (PRC), a statistical method for the dynamic prediction of survival when many longitudinal predictors are available. See Signorelli (2024) <doi:10.32614/RJ-2024-014> and Signorelli et al. (2021) <doi:10.1002/sim.9178> for details.