Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Automate formation and evaluation of polynomial regression models. The motivation for this package is described in Polynomial Regression As an Alternative to Neural Nets by Xi Cheng, Bohdan Khomtchouk, Norman Matloff, and Pete Mohanty (<arXiv:1806.06850>).
Bindings for additional regression models for use with the parsnip package, including ordinary and spare partial least squares models for regression and classification (Rohart et al (2017) <doi:10.1371/journal.pcbi.1005752>).
Generation of multiple count, binary and ordinal variables simultaneously given the marginal characteristics and association structure. Throughout the package, the word Poisson is used to imply count data under the assumption of Poisson distribution. The details of the method are explained in Amatya, A. and Demirtas, H. (2015) <DOI:10.1080/00949655.2014.953534>.
Compute standard Non-Compartmental Analysis (NCA) parameters for typical pharmacokinetic analyses and summarize them.
This package provides support for building pkgdown websites without an internet connection. Works by bundling cached dependencies and implementing drop-in replacements for key pkgdown functions. Enables package documentation websites to be built in environments where internet access is unavailable or restricted. For more details on generating pkgdown websites, see Wickham et al. (2025) <doi:10.32614/CRAN.package.pkgdown>.
This package provides a function kitten() which creates cute little packages which pass R package checks. This sets it apart from package.skeleton() which it calls, and which leaves imperfect files behind. As this is not exactly helpful for beginners, kitten() offers an alternative. Unit test support can be added via the tinytest package (if present), and documentation-creation support can be added via roxygen2 (if present).
This package produces odds ratio analyses with comprehensive reporting tools. Generates plots, summary tables, and diagnostic checks for logistic regression models fitted with glm() using binomial family. Provides visualisation methods, formatted reporting tables via gt', and tools to assess logistic regression model assumptions.
This package provides classes for analysing and implementing equity portfolios, including routines for generating tradelists and calculating exposures to user-specified risk factors.
NOTE: PARAMLINK HAS BEEN SUPERSEDED BY THE PEDSUITE PACKAGES (<https://magnusdv.github.io/pedsuite/>). PARAMLINK IS MAINTAINED ONLY FOR LEGACY PURPOSES AND SHOULD NOT BE USED IN NEW PROJECTS. A suite of tools for analysing pedigrees with marker data, including parametric linkage analysis, forensic computations, relatedness analysis and marker simulations. The core of the package is an implementation of the Elston-Stewart algorithm for pedigree likelihoods, extended to allow mutations as well as complex inbreeding. Features for linkage analysis include singlepoint LOD scores, power analysis, and multipoint analysis (the latter through a wrapper to the MERLIN software). Forensic applications include exclusion probabilities, genotype distributions and conditional simulations. Data from the Familias software can be imported and analysed in paramlink'. Finally, paramlink offers many utility functions for creating, manipulating and plotting pedigrees with or without marker data (the actual plotting is done by the kinship2 package).
It enables sparklyr to integrate with Spark Connect', and Databricks Connect by providing a wrapper over the PySpark python library.
Fits and analyses time dependent marked point process models with an emphasis on earthquake modelling. For a more detailed introduction to the package, see the topic "PtProcess". A list of recent changes can be found in the topic "Change Log".
The Penn World Table provides purchasing power parity and national income accounts converted to international prices for 189 countries for some or all of the years 1950-2010.
Algorithms to speed up the Bayesian Lasso Cox model (Lee et al., Int J Biostat, 2011 <doi:10.2202/1557-4679.1301>) and the Bayesian Lasso Cox with mandatory variables (Zucknick et al. Biometrical J, 2015 <doi:10.1002/bimj.201400160>).
Post-selection inference in linear regression models, constructing simultaneous confidence intervals across a user-specified universe of models. Implements the methodology described in Kuchibhotla, Kolassa, and Kuffner (2022) "Post-Selection Inference" <doi:10.1146/annurev-statistics-100421-044639> to ensure valid inference after model selection, with applications in high-dimensional settings like Lasso selection.
Perform simultaneous estimation and variable selection for correlated bivariate mixed outcomes (one continuous outcome and one binary outcome per cluster) using penalized generalized estimating equations. In addition, clustered Gaussian and binary outcomes can also be modeled. The SCAD, MCP, and LASSO penalties are supported. Cross-validation can be performed to find the optimal regularization parameter(s).
Executes simple parametric models for right-censored survival data. Functionality emulates capabilities in Minitab', including fitting right-censored data, assessing fit, plotting survival functions, and summary statistics and probabilities.
Fits penalized linear mixed models that correct for unobserved confounding factors. plmmr infers and corrects for the presence of unobserved confounding effects such as population stratification and environmental heterogeneity. It then fits a linear model via penalized maximum likelihood. Originally designed for the multivariate analysis of single nucleotide polymorphisms (SNPs) measured in a genome-wide association study (GWAS), plmmr eliminates the need for subpopulation-specific analyses and post-analysis p-value adjustments. Functions for the appropriate processing of PLINK files are also supplied. For examples, see the package homepage. <https://pbreheny.github.io/plmmr/>.
Efficient statistical inference of two-sample MR (Mendelian Randomization) analysis. It can account for the correlated instruments and the horizontal pleiotropy, and can provide the accurate estimates of both causal effect and horizontal pleiotropy effect as well as the two corresponding p-values. There are two main functions in the PPMR package. One is PMR_individual() for individual level data, the other is PMR_summary() for summary data.
Do Markov chain Monte Carlo (MCMC) simulation of Potts models (Potts, 1952, <doi:10.1017/S0305004100027419>), which are the multi-color generalization of Ising models (so, as as special case, also simulates Ising models). Use the Swendsen-Wang algorithm (Swendsen and Wang, 1987, <doi:10.1103/PhysRevLett.58.86>) so MCMC is fast. Do maximum composite likelihood estimation of parameters (Besag, 1975, <doi:10.2307/2987782>, Lindsay, 1988, <doi:10.1090/conm/080>).
Set of tools to automatize extraction of data on pests from EPPO Data Services and EPPO Global Database and to put them into tables with human readable format. Those function use EPPO database API', thus you first need to register on <https://data.eppo.int> (free of charge). Additional helpers allow to download, check and connect to SQLite EPPO database'.
This package provides a set of functions to efficiently recognize and clean the continuous dorsal pattern of a female brown anole lizard (Anolis sagrei) traced from ImageJ', an open platform for scientific image analysis (see <https://imagej.net> for more information), and extract common features such as the pattern sinuosity indices, coefficient of variation, and max-min width.
For a given graph containing vertices, edges, and a signal associated with the vertices, the PathwaySpace package performs a convolution operation, which involves a weighted combination of neighboring vertices and their associated signals. The package then uses a decay function to project these signals, creating geodesic paths on a 2D-image space. PathwaySpace could have various applications, such as visualizing network data in a graphical format that highlights the relationships and signal strengths between vertices. It can be particularly useful for understanding the influence of signals through complex networks. By combining graph theory, signal processing, and visualization, the PathwaySpace package provides a novel way of representing graph data.
Comprehensive toolkit for generating various numerical features of protein sequences described in Xiao et al. (2015) <DOI:10.1093/bioinformatics/btv042>. For full functionality, the software ncbi-blast+ is needed, see <https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html> for more information.
Joint frailty models have been widely used to study the associations between recurrent events and a survival outcome. However, existing joint frailty models only consider one or a few recurrent events and cannot deal with high-dimensional recurrent events. This package can be used to fit our recently developed penalized joint frailty model that can handle high-dimensional recurrent events. Specifically, an adaptive lasso penalty is imposed on the parameters for the effects of the recurrent events on the survival outcome, which allows for variable selection. Also, our algorithm is computationally efficient, which is based on the Gaussian variational approximation method.