Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Carries out model-based clustering or classification using parsimonious Gaussian mixture models. McNicholas and Murphy (2008) <doi:10.1007/s11222-008-9056-0>, McNicholas (2010) <doi:10.1016/j.jspi.2009.11.006>, McNicholas and Murphy (2010) <doi:10.1093/bioinformatics/btq498>, McNicholas et al. (2010) <doi:10.1016/j.csda.2009.02.011>.
This package implements transformations of p-values to the smallest possible Bayes factor within the specified class of alternative hypotheses, as described in Held & Ott (2018, <doi:10.1146/annurev-statistics-031017-100307>). Covers several common testing scenarios such as z-tests, t-tests, likelihood ratio tests and the F-test.
Support Vector Machine (SVM) classification with simultaneous feature selection using penalty functions is implemented. The smoothly clipped absolute deviation (SCAD), L1-norm', Elastic Net ('L1-norm and L2-norm') and Elastic SCAD (SCAD and L2-norm') penalties are available. The tuning parameters can be found using either a fixed grid or a interval search.
This package provides functions for constructing dashboards for business process monitoring. Building on the event log objects class from package bupaR'. Allows the use to assemble custom shiny dashboards based on process data.
Function to read PX-Web data into R via API. The example code reads data from the three national statistical institutes, Statistics Norway, Statistics Sweden and Statistics Finland.
This package implements a Bayesian profile regression using a generalized linear mixed model as output model. The package allows for binary (probit mixed model) and continuous (linear mixed model) outcomes and both continuous and categorical clustering variables. The package utilizes RcppArmadillo and RcppDist for high-performance statistical computing in C++. For more details see Amestoy & al. (2025) <doi:10.48550/arXiv.2510.08304>.
This package provides a function to estimate panel-corrected standard errors. Data may contain balanced or unbalanced panels.
This package provides methods for plotting potentially large (raster) images interactively on a plain HTML canvas. In contrast to package mapview data are plotted without background map, but data can be projected to any spatial coordinate reference system. Supports plotting of classes RasterLayer', RasterStack', RasterBrick (from package raster') as well as png files located on disk. Interactivity includes zooming, panning, and mouse location information. In case of multi-layer RasterStacks or RasterBricks', RGB image plots are created (similar to raster::plotRGB - but interactive).
This package provides a simple function to bind a piped object to a placeholder symbol to enable complex function evaluation with the base R |> pipe.
This package provides a function to convert PRQL strings to SQL strings. Combined with other R functions that take SQL as an argument, PRQL can be used on R.
Based on (but not identical to) the no-longer-maintained package phyext', provides enhancements to phylobase classes, specifically for use by package SigTree'; provides classes and methods which help users manipulate branch-annotated trees (as in SigTree'); also provides support for a few other extra features.
Threshold model, panel version of Hylleberg et al. (1990) <DOI:10.1016/0304-4076(90)90080-D> seasonal unit root tests, and panel unit root test of Chang (2002) <DOI:10.1016/S0304-4076(02)00095-7>.
Calculate parametric mortality and Fertility models, following packages BaSTA in Colchero, Jones and Rebke (2012) <doi:10.1111/j.2041-210X.2012.00186.x> and BaFTA <https://github.com/fercol/BaFTA>, summary statistics (e.g. ageing rates, life expectancy, lifespan equality, etc.), life table and product limit estimators from census data.
This package provides functions to select samples using PPS (probability proportional to size) sampling. The package also includes a function for stratified simple random sampling, a function to compute joint inclusion probabilities for Sampford's method of PPS sampling, and a few utility functions. The user's guide pps-ug.pdf is included in the .../pps/doc directory. The methods are described in standard survey sampling theory books such as Cochran's "Sampling Techniques"; see the user's guide for references.
Based on different statistical definitions of discrimination, several methods have been proposed to detect and mitigate social inequality in machine learning models. This package aims to provide an alternative to fairness treatment in predictive models. The ROC method implemented in this package is described by Kamiran, Karim and Zhang (2012) <https://ieeexplore.ieee.org/document/6413831/>.
This package produces odds ratio analyses with comprehensive reporting tools. Generates plots, summary tables, and diagnostic checks for logistic regression models fitted with glm() using binomial family. Provides visualisation methods, formatted reporting tables via gt', and tools to assess logistic regression model assumptions.
Set of functions for analysis of Principal Coordinates of Phylogenetic Structure (PCPS).
This package implements IV-estimator and Bayesian estimator for linear-in-means Spatial Autoregressive (SAR) model (see LeSage, 1997 <doi:10.1177/016001769702000107>; Lee, 2004 <doi:10.1111/j.1468-0262.2004.00558.x>; Bramoullé et al., 2009 <doi:10.1016/j.jeconom.2008.12.021>), while assuming that only a partial information about the network structure is available. Examples are when the adjacency matrix is not fully observed or when only consistent estimation of the network formation model is available (see Boucher and Houndetoungan, 2025 <doi:10.48550/arXiv.2509.08145>).
Bayesian variable selection for regression models of under-reported count data as well as for (overdispersed) Poisson, negative binomal and binomial logit regression models using spike and slab priors.
Performance metric provides different performance measures like mean squared error, root mean square error, mean absolute deviation, mean absolute percentage error etc. of a fitted model. These can provide a way for forecasters to quantitatively compare the performance of competing models. For method details see (i) Pankaj Das (2020) <http://krishi.icar.gov.in/jspui/handle/123456789/44138>.
It provides functions to perform permutation conditional random one-sample and two-samples t-tests in a multivariate framework.
Fit a model with potentially many linear and smooth predictors. Interaction effects can also be quantified. Variable selection is done using penalisation. For l1-type penalties we use iterative steps alternating between using linear predictors (lasso) and smooth predictors (generalised additive model).
Basic functions to fit and predict periodic autoregressive time series models. These models are discussed in the book P.H. Franses (1996) "Periodicity and Stochastic Trends in Economic Time Series", Oxford University Press. Data set analyzed in that book is also provided. NOTE: the package was orphaned during several years. It is now only maintained, but no major enhancements are expected, and the maintainer cannot provide any support.
Hybrid control design is a way to borrow information from external controls to augment concurrent controls in a randomized controlled trial and is expected to overcome the feasibility issue when adequate randomized controlled trials cannot be conducted. A major challenge in the hybrid control design is its inability to eliminate a prior-data conflict caused by systematic imbalances in measured or unmeasured confounding factors between patients in the concurrent treatment/control group and external controls. To prevent the prior-data conflict, a combined use of propensity score matching and Bayesian commensurate prior has been proposed in the context of hybrid control design. The propensity score matching is first performed to guarantee the balance in baseline characteristics, and then the Bayesian commensurate prior is constructed while discounting the information based on the similarity in outcomes between the concurrent and external controls. psBayesborrow is a package to implement the propensity score matching and the Bayesian analysis with commensurate prior, as well as to conduct a simulation study to assess operating characteristics of the hybrid control design, where users can choose design parameters in flexible and straightforward ways depending on their own application.