Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimation of the number of colonization events between islands of the same archipelago for a species. It uses rarefaction curves to control for both field and genetic sample sizes as it was described in Coello et al. (2022) <doi:10.1111/jbi.14341>.
Calculate the optimal vertex partition of a graph using the persistence as objective function. These subroutines have been used in Avellone et al. <doi:10.1007/s10288-023-00559-z>.
The PDE (Pdf Data Extractor) allows the extraction of information and tables optionally based on search words from PDF (Portable Document Format) files and enables the visualization of the results, both by providing a convenient user-interface.
Enhanced RTF wrapper written in R for use with existing R tables packages such as Huxtable or GT'. This package fills a gap where tables in certain packages can be written out to RTF, but cannot add certain metadata or features to the document that are required/expected in a report for a regulatory submission, such as multiple levels of titles and footnotes, making the document landscape, and controlling properties such as margins.
Fetches the PREDICTS database and relevant metadata from the Data Portal at the Natural History Museum, London <https://data.nhm.ac.uk>. Data were collated from over 400 existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from sites around the world. These data are described in Hudson et al. (2013) <doi:10.1002/ece3.2579>.
Make statistical inference on the probability of being in response, the duration of response, and the cumulative response rate up to a given time point. The method can be applied to analyze phase II randomized clinical trials with the endpoints being time to treatment response and time to progression or death.
This provides utilities for creating classed error and warning conditions based on where the error originated.
Assessment of habitat selection by means of the permutation-based combination of sign tests (Fattorini et al., 2014 <DOI:10.1007/s10651-013-0250-7>). To exemplify the application of this procedure, habitat selection is assessed for a population of European Brown Hares settled in central Italy.
This package provides essential checklists for R package developers, whether you're creating your first package or beginning a new project. This tool guides you through each step of the development process, including specific considerations for submitting your package to the Comprehensive R Archive Network (CRAN). Simplify your workflow and ensure adherence to best practices with packagepal'.
An implementation of reliability estimation methods described in the paper (Bosnic, Z., & Kononenko, I. (2008) <doi:10.1007/s10489-007-0084-9>), which allows you to test the reliability of a single predicted instance made by your model and prediction function. It also allows you to make a correlation test to estimate which reliability estimate is the most accurate for your model.
Offers tools to estimate and visualize levels of major pollutants (CO, NO2, SO2, Ozone, PM2.5 and PM10) across the conterminous United States for user-defined time ranges. Provides functions to retrieve pollutant data from the U.S. Environmental Protection Agencyâ s Air Quality System (AQS) API service <https://aqs.epa.gov/aqsweb/documents/data_api.html> for interactive visualization through a shiny application, allowing users to explore pollutant levels for a given location over time relative to the National Ambient Air Quality Standards (NAAQS).
This package provides a grammar of graphics framework built on base graphics. It provides a bbplot object and a + operator to incrementally compose plots from data, aesthetic mappings and layers, then render them using the base plotting system. The package includes common geometric layers (points, lines, segments, bars, histograms, boxplots and tiles), scales for color and other aesthetics, legends, faceting, themes, and significance annotations.
Fit penalized splines mixed-effects models (a special case of additive models) for large longitudinal datasets. The package includes a psme() function that (1) relies on package mgcv for constructing population and subject smooth functions as penalized splines, (2) transforms the constructed additive model to a linear mixed-effects model, (3) exploits package lme4 for model estimation and (4) backtransforms the estimated linear mixed-effects model to the additive model for interpretation and visualization. See Pedersen et al. (2019) <doi:10.7717/peerj.6876> and Bates et al. (2015) <doi:10.18637/jss.v067.i01> for an introduction. Unlike the gamm() function in mgcv', the psme() function is fast and memory-efficient, able to handle datasets with millions of observations.
This package provides a collection of tools for approximating the PDQ functions (respectively, the cumulative distribution, density, and quantile) of probability distributions via classical expansions involving moments and cumulants.
Automates the process of creating a scale bar and north arrow in any package that uses base graphics to plot in R. Bounding box tools help find and manipulate extents. Finally, there is a function to automate the process of setting margins, plotting the map, scale bar, and north arrow, and resetting graphic parameters upon completion.
This package provides functions for generating progressively Type-II censored data in a mixture structure and fitting models using a constrained EM algorithm. It can also create a progressive Type-II censored version of a given real dataset to be considered for model fitting.
Estimation, prediction, thresholding, transformation, and plotting for partially linear additive quantile regression. Intuitive functions for fitting and plotting partially linear additive quantile regression models. Uses and works with functions from the quantreg package.
This package provides functionality for Bayesian analysis of replication studies using power prior approaches (Pawel et al., 2023) <doi:10.1007/s11749-023-00888-5>.
This package provides various styles of function chaining methods: Pipe operator, Pipe object, and pipeline function, each representing a distinct pipeline model yet sharing almost a common set of features: A value can be piped to the first unnamed argument of a function and to dot symbol in an enclosed expression. The syntax is designed to make the pipeline more readable and friendly to a wide range of operations.
Optimal experimental designs for both population and individual studies based on nonlinear mixed-effect models. Often this is based on a computation of the Fisher Information Matrix. This package was developed for pharmacometric problems, and examples and predefined models are available for these types of systems. The methods are described in Nyberg et al. (2012) <doi:10.1016/j.cmpb.2012.05.005>, and Foracchia et al. (2004) <doi:10.1016/S0169-2607(03)00073-7>.
This package provides functions to estimate statistical errors of phylogenetic metrics particularly to detect binary trait influence on diversification, as well as a function to simulate trees with fixed number of sampled taxa and trait prevalence.
Automated pain scoring from paw withdrawal tracking data. Based on Jones et al. (2020) "A machine-vision approach for automated pain measurement at millisecond timescales" <doi:10.7554/eLife.57258>.
Generates Proteomics (PTX) quality control (QC) reports for shotgun LC-MS data analyzed with the MaxQuant software suite (from .txt files) or mzTab files (ideally from OpenMS QualityControl tool). Reports are customizable (target thresholds, subsetting) and available in HTML or PDF format. Published in J. Proteome Res., Proteomics Quality Control: Quality Control Software for MaxQuant Results (2015) <doi:10.1021/acs.jproteome.5b00780>.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey 2014 Household Listing questionnaire data for Punjab, Pakistan.