Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a friendly API for sequence iteration and set comprehension.
In each odd dimension is a convex body - the polar zonoid - whose generating functions are trigonometric polynomials. The polar zonoid is a straightforward generalization of the polar zonohedron in dimension 3, as defined by Chilton and Coxeter (1963) <doi:10.2307/2313051>. The package has some applications of the polar zonoid, including the properties of configuration spaces of arcs on the circle and 3x3 rotation matrices. There is also a root solver for trigonometric polynomials.
Uses provenance collected by rdtLite package or comparable tool to display information about input files, output files, and exchanged files for a single R script or a series of R scripts.
The PDE (Pdf Data Extractor) allows the extraction of information and tables optionally based on search words from PDF (Portable Document Format) files and enables the visualization of the results, both by providing a convenient user-interface.
This package provides a progression model for repeated measures (PMRM) is a continuous-time nonlinear mixed-effects model for longitudinal clinical trials in progressive diseases. Unlike mixed models for repeated measures (MMRMs), which estimate treatment effects as linear combinations of additive effects on the outcome scale, PMRMs characterize treatment effects in terms of the underlying disease trajectory. This framing yields clinically interpretable quantities such as average time saved and percent reduction in decline due to treatment. This package implements frequentist PMRMs by Raket (2022) <doi:10.1002/sim.9581> using RTMB by Kristensen (2016) <doi:10.18637/jss.v070.i05>.
This package provides functions which can be used to support the Multicriteria Decision Analysis (MCDA) process involving multiple criteria, by PROMETHEE (Preference Ranking Organization METHod for Enrichment of Evaluations).
Allows biomechanical pressure data from a range of systems to be imported and processed in a reproducible manner. Automatic and manual tools are included to let the user define regions (masks) to be analyzed. Also includes functions for visualizing and animating pressure data. Example methods are described in Shi et al., (2022) <doi:10.1038/s41598-022-19814-0>, Lee et al., (2014) <doi:10.1186/1757-1146-7-18>, van der Zward et al., (2014) <doi:10.1186/1757-1146-7-20>, Najafi et al., (2010) <doi:10.1016/j.gaitpost.2009.09.003>, Cavanagh and Rodgers (1987) <doi:10.1016/0021-9290(87)90255-7>.
Pharmacometric tools for common data analytical tasks; closed-form solutions for calculating concentrations at given times after dosing based on compartmental PK models (1-compartment, 2-compartment and 3-compartment, covering infusions, zero- and first-order absorption, and lag times, after single doses and at steady state, per Bertrand & Mentre (2008) <https://www.facm.ucl.ac.be/cooperation/Vietnam/WBI-Vietnam-October-2011/Modelling/Monolix32_PKPD_library.pdf>); parametric simulation from NONMEM-generated parameter estimates and other output; and parsing, tabulating and plotting results generated by Perl-speaks-NONMEM (PsN).
This function plots a contour line with a user-defined probability and tightness of fit.
This package provides a coding assistant using Perplexity's Large Language Models <https://www.perplexity.ai/> API. A set of functions and RStudio add-ins that aim to help R developers.
This package provides a clustering approach applicable to every projection method is proposed here. The two-dimensional scatter plot of any projection method can construct a topographic map which displays unapparent data structures by using distance and density information of the data. The generalized U*-matrix renders this visualization in the form of a topographic map, which can be used to automatically define the clusters of high-dimensional data. The whole system is based on Thrun and Ultsch, "Using Projection based Clustering to Find Distance and Density based Clusters in High-Dimensional Data" <DOI:10.1007/s00357-020-09373-2>. Selecting the correct projection method will result in a visualization in which mountains surround each cluster. The number of clusters can be determined by counting valleys on the topographic map. Most projection methods are wrappers for already available methods in R. By contrast, the neighbor retrieval visualizer (NeRV) is based on C++ source code of the dredviz software package, and the Curvilinear Component Analysis (CCA) is translated from MATLAB ('SOM Toolbox 2.0) to R.
Tokenizers break text into pieces that are more usable by machine learning models. Many tokenizers share some preparation steps. This package provides those shared steps, along with a simple tokenizer.
This package provides a collection of R functions that are widely used by the Petersen Lab. Included are functions for various purposes, including evaluating the accuracy of judgments and predictions, performing scoring of assessments, generating correlation matrices, conversion of data between various types, data management, psychometric evaluation, extensions related to latent variable modeling, various plotting capabilities, and other miscellaneous useful functions. By making the package available, we hope to make our methods reproducible and replicable by others and to help others perform their data processing and analysis methods more easily and efficiently. The codebase is provided in Petersen (2025) <doi:10.5281/zenodo.7602890> and on CRAN': <doi: 10.32614/CRAN.package.petersenlab>. The package is described in "Principles of Psychological Assessment: With Applied Examples in R" (Petersen, 2024, 2025a) <doi:10.1201/9781003357421>, <doi:10.25820/work.007199>, <doi:10.5281/zenodo.6466589> and in "Fantasy Football Analytics: Statistics, Prediction, and Empiricism Using R" (Petersen, 2025b).
This package contains logic for computing the statistical association of variable groups, i.e., gene sets, with respect to the principal components of genomic data.
An interactive document for preprocessing the dataset using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://analyticmodels.shinyapps.io/PREPShiny/>.
Power analysis for AB testing. The calculations are based on the Welch's unequal variances t-test, which is generally preferred over the Student's t-test when sample sizes and variances of the two groups are unequal, which is frequently the case in AB testing. In such situations, the Student's t-test will give biased results due to using the pooled standard deviation, unlike the Welch's t-test.
Check if a remote computer is up. It can either just call the system ping command, or check a specified TCP port.
Compiles functions to trim, bin, visualise, and analyse activity/sleep time-series data collected from the Drosophila Activity Monitor (DAM) system (Trikinetics, USA). The following methods were used to compute periodograms - Chi-square periodogram: Sokolove and Bushell (1978) <doi:10.1016/0022-5193(78)90022-X>, Lomb-Scargle periodogram: Lomb (1976) <doi:10.1007/BF00648343>, Scargle (1982) <doi:10.1086/160554> and Ruf (1999) <doi:10.1076/brhm.30.2.178.1422>, and Autocorrelation: Eijzenbach et al. (1986) <doi:10.1111/j.1440-1681.1986.tb00943.x>. Identification of activity peaks is done after using a Savitzky-Golay filter (Savitzky and Golay (1964) <doi:10.1021/ac60214a047>) to smooth raw activity data. Three methods to estimate anticipation of activity are used based on the following papers - Slope method: Fernandez et al. (2020) <doi:10.1016/j.cub.2020.04.025>, Harrisingh method: Harrisingh et al. (2007) <doi:10.1523/JNEUROSCI.3680-07.2007>, and Stoleru method: Stoleru et al. (2004) <doi:10.1038/nature02926>. Rose plots and circular analysis are based on methods from - Batschelet (1981) <ISBN:0120810506> and Zar (2010) <ISBN:0321656865>.
This package provides methods to detect genetic markers involved in biological adaptation. pcadapt provides statistical tools for outlier detection based on Principal Component Analysis. Implements the method described in (Luu, 2016) <DOI:10.1111/1755-0998.12592> and later revised in (Privé, 2020) <DOI:10.1093/molbev/msaa053>.
It allows the user to determine sample sizes, select probabilistic samples, make estimates of different parameters for the total finite population and in studio domains, using the main design drawings.
Oak declines are complex disease syndromes and consist of many visual indicators that include aspects of tree size, crown condition and trunk condition. This can cause difficulty in the manual classification of symptomatic and non-symptomatic trees from what is in reality a broad spectrum of oak tree health condition. Two phenotypic oak decline indexes have been developed to quantitatively describe and differentiate oak decline syndromes in Quercus robur. This package provides a toolkit to generate these decline indexes from phenotypic descriptors using the machine learning algorithm random forest. The methodology for generating these indexes is outlined in Finch et al. (2121) <doi:10.1016/j.foreco.2021.118948>.
An enterprise-targeted scalable and UI-standardized shiny framework including a variety of developer convenience functions with the goal of both streamlining robust application development while assisting with creating a consistent user experience regardless of application or developer.
This package provides a robust approach for omics data integration and disease subtyping. PINSPlus is fast and supports the analysis of large datasets with hundreds of thousands of samples and features. The software automatically determines the optimal number of clusters and then partitions the samples in a way such that the results are robust against noise and data perturbation (Nguyen et al. (2019) <DOI: 10.1093/bioinformatics/bty1049>, Nguyen et al. (2017)<DOI: 10.1101/gr.215129.116>, Nguyen et al. (2021)<DOI: 10.3389/fonc.2021.725133>).
This package provides a user-friendly interface for creating and managing empirical crowd-sourcing studies via API access to <https://www.prolific.co>.