_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-bplsr 1.0.4
Propagated dependencies: r-statmod@1.5.1 r-progress@1.2.3 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bplsr
Licenses: GPL 3+
Build system: r
Synopsis: Bayesian partial least squares regression
Description:

Fits the Bayesian partial least squares regression model introduced in Urbas et al. (2024) <doi:10.1214/24-AOAS1947>. Suitable for univariate and multivariate regression with high-dimensional data.

r-binpackr 0.2.0
Propagated dependencies: r-cpp11@0.5.2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/lschneiderbauer/binpackr
Licenses: GPL 3+
Build system: r
Synopsis: Fast 1d Bin Packing
Description:

This package implements the First Fit Decreasing algorithm to achieve one dimensional heuristic bin packing. Runtime is of order O(n log(n)) where n is the number of items to pack. See "The Art of Computer Programming Vol. 1" by Donald E. Knuth (1997, ISBN: 0201896834) for more details.

r-bigsurvsgd 0.0.1
Propagated dependencies: r-survival@3.8-3 r-rcpp@1.1.0 r-foreach@1.5.2 r-doparallel@1.0.17 r-bigmemory@4.6.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bigSurvSGD
Licenses: GPL 2+
Build system: r
Synopsis: Big Survival Analysis Using Stochastic Gradient Descent
Description:

Fits Cox model via stochastic gradient descent. This implementation avoids computational instability of the standard Cox Model when dealing large datasets. Furthermore, it scales up with large datasets that do not fit the memory. It also handles large sparse datasets using proximal stochastic gradient descent algorithm. For more details about the method, please see Aliasghar Tarkhan and Noah Simon (2020) <arXiv:2003.00116v2>.

r-blend 0.1.1.1
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/kunfa/Blend
Licenses: GPL 2
Build system: r
Synopsis: Robust Bayesian Longitudinal Regularized Semiparametric Mixed Models
Description:

Our recently developed fully robust Bayesian semiparametric mixed-effect model for high-dimensional longitudinal studies with heterogeneous observations can be implemented through this package. This model can distinguish between time-varying interactions and constant-effect-only cases to avoid model misspecifications. Facilitated by spike-and-slab priors, this model leads to superior performance in estimation, identification and statistical inference. In particular, robust Bayesian inferences in terms of valid Bayesian credible intervals on both parametric and nonparametric effects can be validated on finite samples. The Markov chain Monte Carlo algorithms of the proposed and alternative models are efficiently implemented in C++'.

r-basifor 0.4.1
Propagated dependencies: r-rodbc@1.3-26.1 r-measurements@1.5.1 r-httr@1.4.7 r-hmisc@5.2-4 r-foreign@0.8-90 r-curl@7.0.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=basifoR
Licenses: GPL 3
Build system: r
Synopsis: Retrieval and Processing of the Spanish National Forest Inventory
Description:

Data sets of the Spanish National Forest Inventory <https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible.html> are processed to compute tree metrics and statistics. Function metrics2Vol() controls most of the routines.

r-bolstad2 1.0-29
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/jmcurran/Bolstad2
Licenses: GPL 2+
Build system: r
Synopsis: Bolstad Functions
Description:

This package provides a set of R functions and data sets for the book "Understanding Computational Bayesian Statistics." This book was written by Bill (WM) Bolstad and published in 2009 by John Wiley & Sons (ISBN 978-0470046098).

r-baseq 0.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/ambuvjyn/baseq
Licenses: GPL 3
Build system: r
Synopsis: Basic Sequence Processing Tool for Biological Data
Description:

Primarily created as an easy and understanding way to do basic sequences surrounding the central dogma of molecular biology.

r-binancer 1.2.0
Propagated dependencies: r-snakecase@0.11.1 r-logger@0.4.1 r-jsonlite@2.0.0 r-httr@1.4.7 r-digest@0.6.39 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://daroczig.github.io/binancer/
Licenses: FSDG-compatible
Build system: r
Synopsis: API Client to 'Binance'
Description:

R client to the Binance Public Rest API for data collection on cryptocurrencies, portfolio management and trading: <https://github.com/binance/binance-spot-api-docs/blob/master/rest-api.md>.

r-blsr 0.5.0
Propagated dependencies: r-stringr@1.6.0 r-rlang@1.1.6 r-readr@2.1.6 r-purrr@1.2.0 r-httr@1.4.7 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/groditi/blsR
Licenses: Expat
Build system: r
Synopsis: Make Requests from the Bureau of Labor Statistics API
Description:

This package implements v2 of the B.L.S. API for requests of survey information and time series data through 3-tiered API that allows users to interact with the raw API directly, create queries through a functional interface, and re-shape the data structures returned to fit common uses. The API definition is located at: <https://www.bls.gov/developers/api_signature_v2.htm>.

r-bayesdissolution 0.2.1
Propagated dependencies: r-shiny@1.11.1 r-pscl@1.5.9 r-mnormt@2.1.1 r-mcmcpack@1.7-1 r-geor@1.9-6 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesDissolution
Licenses: GPL 2
Build system: r
Synopsis: Bayesian Models for Dissolution Testing
Description:

Fits Bayesian models (amongst others) to dissolution data sets that can be used for dissolution testing. The package was originally constructed to include only the Bayesian models outlined in Pourmohamad et al. (2022) <doi:10.1111/rssc.12535>. However, additional Bayesian and non-Bayesian models (based on bootstrapping and generalized pivotal quanties) have also been added. More models may be added over time.

r-bcea 2.4.83
Propagated dependencies: r-voi@1.0.3 r-tidyr@1.3.1 r-scales@1.4.0 r-rdpack@2.6.4 r-purrr@1.2.0 r-plotly@4.11.0 r-matrix@1.7-4 r-mass@7.3-65 r-gridextra@2.3 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://gianluca.statistica.it/software/bcea/
Licenses: GPL 3
Build system: r
Synopsis: Bayesian Cost Effectiveness Analysis
Description:

This package produces an economic evaluation of a sample of suitable variables of cost and effectiveness / utility for two or more interventions, e.g. from a Bayesian model in the form of MCMC simulations. This package computes the most cost-effective alternative and produces graphical summaries and probabilistic sensitivity analysis, see Baio et al (2017) <doi:10.1007/978-3-319-55718-2>.

r-bpgmm 1.1.1
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-pgmm@1.2.8 r-mvtnorm@1.3-3 r-mcmcse@1.5-1 r-mclust@6.1.2 r-mass@7.3-65 r-label-switching@1.8 r-gtools@3.9.5 r-fabmix@5.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bpgmm
Licenses: GPL 3
Build system: r
Synopsis: Bayesian Model Selection Approach for Parsimonious Gaussian Mixture Models
Description:

Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.

r-bingat 1.3
Propagated dependencies: r-vegan@2.7-2 r-network@1.19.0 r-matrixstats@1.5.0 r-gplots@3.2.0 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bingat
Licenses: ASL 2.0
Build system: r
Synopsis: Binary Graph Analysis Tools
Description:

This package provides tools to analyze binary graph objects.

r-bio-infer 1.3-6
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bio.infer
Licenses: GPL 2+
Build system: r
Synopsis: Predict Environmental Conditions from Biological Observations
Description:

Imports benthic count data, reformats this data, and computes environmental inferences from this data.

r-bootcluster 0.4.3
Propagated dependencies: r-sna@2.8 r-progress@1.2.3 r-network@1.19.0 r-mclust@6.1.2 r-kernlab@0.9-33 r-intergraph@2.0-4 r-igraph@2.2.1 r-gridextra@2.3 r-ggplot2@4.0.1 r-ggally@2.4.0 r-fpc@2.2-13 r-foreach@1.5.2 r-flexclust@1.5.0 r-dplyr@1.1.4 r-doparallel@1.0.17 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bootcluster
Licenses: GPL 2
Build system: r
Synopsis: Bootstrapping Estimates of Clustering Stability
Description:

Implementation of the bootstrapping approach for the estimation of clustering stability and its application in estimating the number of clusters, as introduced by Yu et al (2016)<doi:10.1142/9789814749411_0007>. Implementation of the non-parametric bootstrap approach to assessing the stability of module detection in a graph, the extension for the selection of a parameter set that defines a graph from data in a way that optimizes stability and the corresponding visualization functions, as introduced by Tian et al (2021) <doi:10.1002/sam.11495>. Implemented out-of-bag stability estimation function and k-select Smin-based k-selection function as introduced by Liu et al (2022) <doi:10.1002/sam.11593>. Implemented ensemble clustering method based-on k-means clustering method, spectral clustering method and hierarchical clustering method.

r-bayespm 0.2.0
Propagated dependencies: r-rmutil@1.1.10 r-invgamma@1.2 r-gridextra@2.3 r-ggplot2@4.0.1 r-extradistr@1.10.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bayespm
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Statistical Process Monitoring
Description:

The R-package bayespm implements Bayesian Statistical Process Control and Monitoring (SPC/M) methodology. These methods utilize available prior information and/or historical data, providing efficient online quality monitoring of a process, in terms of identifying moderate/large transient shifts (i.e., outliers) or persistent shifts of medium/small size in the process. These self-starting, sequentially updated tools can also run under complete absence of any prior information. The Predictive Control Charts (PCC) are introduced for the quality monitoring of data from any discrete or continuous distribution that is a member of the regular exponential family. The Predictive Ratio CUSUMs (PRC) are introduced for the Binomial, Poisson and Normal data (a later version of the library will cover all the remaining distributions from the regular exponential family). The PCC targets transient process shifts of typically large size (a.k.a. outliers), while PRC is focused in detecting persistent (structural) shifts that might be of medium or even small size. Apart from monitoring, both PCC and PRC provide the sequentially updated posterior inference for the monitored parameter. Bourazas K., Kiagias D. and Tsiamyrtzis P. (2022) "Predictive Control Charts (PCC): A Bayesian approach in online monitoring of short runs" <doi:10.1080/00224065.2021.1916413>, Bourazas K., Sobas F. and Tsiamyrtzis, P. 2023. "Predictive ratio CUSUM (PRC): A Bayesian approach in online change point detection of short runs" <doi:10.1080/00224065.2022.2161434>, Bourazas K., Sobas F. and Tsiamyrtzis, P. 2023. "Design and properties of the predictive ratio cusum (PRC) control charts" <doi:10.1080/00224065.2022.2161435>.

r-bullwhipgame 0.1.0
Propagated dependencies: r-shiny@1.11.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bullwhipgame
Licenses: GPL 3
Build system: r
Synopsis: Bullwhip Effect Demo in Shiny
Description:

The bullwhipgame is an educational game that has as purpose the illustration and exploration of the bullwhip effect,i.e, the increase in demand variability along the supply chain. Marchena Marlene (2010) <arXiv:1009.3977>.

r-biopetsurv 0.1.0
Propagated dependencies: r-survival@3.8-3 r-gridextra@2.3 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BioPETsurv
Licenses: GPL 2+
Build system: r
Synopsis: Biomarker Prognostic Enrichment Tool for Time-to-Event Trial
Description:

Prognostic Enrichment is a strategy of enriching a clinical trial for testing an intervention intended to prevent or delay an unwanted clinical event. A prognostically enriched trial enrolls only patients who are more likely to experience the unwanted clinical event than the broader patient population (R. Temple (2010) <doi:10.1038/clpt.2010.233>). By testing the intervention in an enriched study population, the trial may be adequately powered with a smaller sample size, which can have both practical and ethical advantages. This package provides tools to evaluate biomarkers for prognostic enrichment of clinical trials with survival/time-to-event outcomes.

r-bestree 0.5.2
Propagated dependencies: r-plyr@1.8.9
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BESTree
Licenses: Expat
Build system: r
Synopsis: Branch-Exclusive Splits Trees
Description:

Decision tree algorithm with a major feature added. Allows for users to define an ordering on the partitioning process. Resulting in Branch-Exclusive Splits Trees (BEST). Cedric Beaulac and Jeffrey S. Rosentahl (2019) <arXiv:1804.10168>.

r-bst 0.3-24
Propagated dependencies: r-rpart@4.1.24 r-gbm@2.2.2 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bst
Licenses: GPL 2+
Build system: r
Synopsis: Gradient Boosting
Description:

Functional gradient descent algorithm for a variety of convex and non-convex loss functions, for both classical and robust regression and classification problems. See Wang (2011) <doi:10.2202/1557-4679.1304>, Wang (2012) <doi:10.3414/ME11-02-0020>, Wang (2018) <doi:10.1080/10618600.2018.1424635>, Wang (2018) <doi:10.1214/18-EJS1404>.

r-bet 0.5.4
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BET
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Binary Expansion Testing
Description:

Nonparametric detection of nonuniformity and dependence with Binary Expansion Testing (BET). See Kai Zhang (2019) BET on Independence, Journal of the American Statistical Association, 114:528, 1620-1637, <DOI:10.1080/01621459.2018.1537921>, Kai Zhang, Wan Zhang, Zhigen Zhao, Wen Zhou. (2023). BEAUTY Powered BEAST, <doi:10.48550/arXiv.2103.00674> and Wan Zhang, Zhigen Zhao, Michael Baiocchi, Yao Li, Kai Zhang. (2023) SorBET: A Fast and Powerful Algorithm to Test Dependence of Variables, Techinical report.

r-bend 1.1
Propagated dependencies: r-rjags@4-17 r-label-switching@1.8 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/crohlo/BEND
Licenses: Expat
Build system: r
Synopsis: Bayesian Estimation of Nonlinear Data (BEND)
Description:

This package provides a set of models to estimate nonlinear longitudinal data using Bayesian estimation methods. These models include the: 1) Bayesian Piecewise Random Effects Model (Bayes_PREM()) which estimates a piecewise random effects (mixture) model for a given number of latent classes and a latent number of possible changepoints in each class, and can incorporate class and outcome predictive covariates (see Lamm (2022) <https://hdl.handle.net/11299/252533> and Lock et al., (2018) <doi:10.1007/s11336-017-9594-5>), 2) Bayesian Crossed Random Effects Model (Bayes_CREM()) which estimates a linear, quadratic, exponential, or piecewise crossed random effects models where individuals are changing groups over time (e.g., students and schools; see Rohloff et al., (2024) <doi:10.1111/bmsp.12334>), and 3) Bayesian Bivariate Piecewise Random Effects Model (Bayes_BPREM()) which estimates a bivariate piecewise random effects model to jointly model two related outcomes (e.g., reading and math achievement; see Peralta et al., (2022) <doi:10.1037/met0000358>).

r-biomod2 4.3-4-5
Propagated dependencies: r-terra@1.8-86 r-sp@2.2-0 r-scales@1.4.0 r-rpart@4.1.24 r-rlang@1.1.6 r-reshape2@1.4.5 r-reshape@0.8.10 r-proc@1.19.0.1 r-presenceabsence@1.1.11 r-mass@7.3-65 r-ggplot2@4.0.1 r-gbm@2.2.2 r-foreach@1.5.2 r-dplyr@1.1.4 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://biomodhub.github.io/biomod2/
Licenses: GPL 3
Build system: r
Synopsis: Ensemble Platform for Species Distribution Modeling
Description:

This package provides functions for species distribution modeling, calibration and evaluation, ensemble of models, ensemble forecasting and visualization. The package permits to run consistently up to 10 single models on a presence/absences (resp presences/pseudo-absences) dataset and to combine them in ensemble models and ensemble projections. Some bench of other evaluation and visualisation tools are also available within the package.

r-bigmatch 0.6.4
Propagated dependencies: r-rcbalance@1.8.8 r-plyr@1.8.9 r-mvnfast@0.2.8 r-liqueuer@0.0.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bigmatch
Licenses: Expat
Build system: r
Synopsis: Making Optimal Matching Size-Scalable Using Optimal Calipers
Description:

This package implements optimal matching with near-fine balance in large observational studies with the use of optimal calipers to get a sparse network. The caliper is optimal in the sense that it is as small as possible such that a matching exists. The main functions in the bigmatch package are optcal() to find the optimal caliper, optconstant() to find the optimal number of nearest neighbors, and nfmatch() to find a near-fine balance match with a caliper and a restriction on the number of nearest neighbors. Yu, R., Silber, J. H., and Rosenbaum, P. R. (2020). <DOI:10.1214/19-sts699>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283