Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to load Research Patient Data Registry ('RPDR') text queries from Partners Healthcare institutions into R. The package also provides helper functions to manipulate data and execute common procedures such as finding the closest radiological exams considering a given timepoint, or creating a DICOM header database from the downloaded images. All functionalities are parallelized for fast and efficient analyses.
An interface to simplify organizing parameters used in a package, using external configuration files. This attempts to provide a cleaner alternative to options().
Calculates a comprehensive list of features from profile hidden Markov models (HMMs) of proteins. Adapts and ports features for use with HMMs instead of Position Specific Scoring Matrices, in order to take advantage of more accurate multiple sequence alignment by programs such as HHBlits Remmert et al. (2012) <DOI:10.1038/nmeth.1818> and HMMer Eddy (2011) <DOI:10.1371/journal.pcbi.1002195>. Features calculated by this package can be used for protein fold classification, protein structural class prediction, sub-cellular localization and protein-protein interaction, among other tasks. Some examples of features extracted are found in Song et al. (2018) <DOI:10.3390/app8010089>, Jin & Zhu (2021) <DOI:10.1155/2021/8629776>, Lyons et al. (2015) <DOI:10.1109/tnb.2015.2457906> and Saini et al. (2015) <DOI:10.1016/j.jtbi.2015.05.030>.
This package provides functions for estimating probabilistic latent feature models with a disjunctive, conjunctive or additive mapping rule on (aggregated) binary three-way data.
Like similar profiling tools, the proffer package automatically detects sources of slowness in R code. The distinguishing feature of proffer is its utilization of pprof', which supplies interactive visualizations that are efficient and easy to interpret. Behind the scenes, the profile package converts native Rprof() data to a protocol buffer that pprof understands. For the documentation of proffer', visit <https://r-prof.github.io/proffer/>. To learn about the implementations and methodologies of pprof', profile', and protocol buffers, visit <https://github.com/google/pprof>. <https://protobuf.dev>, and <https://github.com/r-prof/profile>, respectively.
Log-multiplicative association models (LMA) are models for cross-classifications of categorical variables where interactions are represented by products of category scale values and an association parameter. Maximum likelihood estimation (MLE) fails for moderate to large numbers of categorical variables. The pleLMA package overcomes this limitation of MLE by using pseudo-likelihood estimation to fit the models to small or large cross-classifications dichotomous or multi-category variables. Originally proposed by Besag (1974, <doi:10.1111/j.2517-6161.1974.tb00999.x>), pseudo-likelihood estimation takes large complex models and breaks it down into smaller ones. Rather than maximizing the likelihood of the joint distribution of all the variables, a pseudo-likelihood function, which is the product likelihoods from conditional distributions, is maximized. LMA models can be derived from a number of different frameworks including (but not limited to) graphical models and uni-dimensional and multi-dimensional item response theory models. More details about the models and estimation can be found in the vignette.
This package implements the American Heart Association Predicting Risk of cardiovascular disease EVENTs (PREVENT) equations from Khan SS, Matsushita K, Sang Y, and colleagues (2023) <doi:10.1161/CIRCULATIONAHA.123.067626>, with optional comparison with their de facto predecessor, the Pooled Cohort Equations from the American Heart Association and American College of Cardiology (2013) <doi:10.1161/01.cir.0000437741.48606.98> and the revision to the Pooled Cohort Equations from Yadlowsky and colleagues (2018) <doi:10.7326/M17-3011>.
Offers a range of utilities and functions for everyday programming tasks. 1.Data Manipulation. Such as grouping and merging, column splitting, and character expansion. 2.File Handling. Read and convert files in popular formats. 3.Plotting Assistance. Helpful utilities for generating color palettes, validating color formats, and adding transparency. 4.Statistical Analysis. Includes functions for pairwise comparisons and multiple testing corrections, enabling perform statistical analyses with ease. 5.Graph Plotting, Provides efficient tools for creating doughnut plot and multi-layered doughnut plot; Venn diagrams, including traditional Venn diagrams, upset plots, and flower plots; Simplified functions for creating stacked bar plots, or a box plot with alphabets group for multiple comparison group.
The goal of PlotFTIR is to easily and quickly kick-start the production of journal-quality Fourier Transform Infra-Red (FTIR) spectral plots in R using ggplot2'. The produced plots can be published directly or further modified by ggplot2 functions. L'objectif de PlotFTIR est de démarrer facilement et rapidement la production des tracés spectraux de spectroscopie infrarouge à transformée de Fourier (IRTF) de qualité journal dans R à l'aide de ggplot2'. Les tracés produits peuvent être publiés directement ou modifiés davantage par les fonctions ggplot2'.
Games that can be played in the R console. Includes coin flip, hangman, jumble, magic 8 ball, poker, rock paper scissors, shut the box, spelling bee, and 2048.
Support for a variety of commonly used precision agriculture operations. Includes functions to download and process raw satellite images from Sentinel-2 <https://documentation.dataspace.copernicus.eu/APIs/OData.html>. Includes functions that download vegetation index statistics for a given period of time, without the need to download the raw images <https://documentation.dataspace.copernicus.eu/APIs/SentinelHub/Statistical.html>. There are also functions to download and visualize weather data in a historical context. Lastly, the package also contains functions to process yield monitor data. These functions can build polygons around recorded data points, evaluate the overlap between polygons, clean yield data, and smooth yield maps.
Be responsible when scraping data from websites by following polite principles: introduce yourself, ask for permission, take slowly and never ask twice.
Extract and interact with data from the Scottish Health and Social Care Open Data platform <https://www.opendata.nhs.scot>.
Calculation of the parametric, nonparametric confidence intervals for the difference or ratio of location parameters, nonparametric confidence interval for the Behrens-Fisher problem and for the difference, ratio and odds-ratio of binomial proportions for comparison of independent samples. Common wrapper functions to split data sets and apply confidence intervals or tests to these subsets. A by-statement allows calculation of CI separately for the levels of further factors. CI are not adjusted for multiplicity.
Statistical power simulation for testing the Rasch Model based on a three-way analysis of variance design with mixed classification.
This package provides functions to calculate commonly used public health statistics and their confidence intervals using methods approved for use in the production of Public Health England indicators such as those presented via Fingertips (<https://fingertips.phe.org.uk/>). It provides functions for the generation of proportions, crude rates, means, directly standardised rates, indirectly standardised rates, standardised mortality ratios, slope and relative index of inequality and life expectancy. Statistical methods are referenced in the following publications. Breslow NE, Day NE (1987) <doi:10.1002/sim.4780080614>. Dobson et al (1991) <doi:10.1002/sim.4780100317>. Armitage P, Berry G (2002) <doi:10.1002/9780470773666>. Wilson EB. (1927) <doi:10.1080/01621459.1927.10502953>. Altman DG et al (2000, ISBN: 978-0-727-91375-3). Chiang CL. (1968, ISBN: 978-0-882-75200-6). Newell C. (1994, ISBN: 978-0-898-62451-9). Eayres DP, Williams ES (2004) <doi:10.1136/jech.2003.009654>. Silcocks PBS et al (2001) <doi:10.1136/jech.55.1.38>. Low and Low (2004) <doi:10.1093/pubmed/fdh175>. Fingertips Public Health Technical Guide: <https://fingertips.phe.org.uk/profile/guidance/supporting-information/PH-methods/>.
Conduct penalized meta-analysis, see Van Lissa, Van Erp, & Clapper (2023) <doi:10.31234/osf.io/6phs5>. In meta-analysis, there are often between-study differences. These can be coded as moderator variables, and controlled for using meta-regression. However, if the number of moderators is large relative to the number of studies, such an analysis may be overfit. Penalized meta-regression is useful in these cases, because it shrinks the regression slopes of irrelevant moderators towards zero.
High Dynamic Range (HDR) images support a large range in luminosity between the lightest and darkest regions of an image. To capture this range, data in HDR images is often stored as floating point numbers and in formats that capture more data and channels than standard image types. This package supports reading and writing two types of HDR images; PFM (Portable Float Map) and OpenEXR images. HDR images can be converted to lower dynamic ranges (for viewing) using tone-mapping. A number of tone-mapping algorithms are included which are based on Reinhard (2002) "Photographic tone reproduction for digital images" <doi:10.1145/566654.566575>.
This package provides a Shiny input widget, pasteBoxInput, that allows users to paste images directly into a Shiny application. The pasted images are captured as Base64 encoded strings and can be used within the application for various purposes, such as display or further processing. This package is particularly useful for applications that require easy and quick image uploads without the need for traditional file selection dialog boxes.
Chromatin immunoprecipitation DNA sequencing results in genomic tracks that show enriched regions or peaks where proteins are bound. This package implements fast C code that computes the true and false positives with respect to a database of annotated region labels.
This package implements the primePCA algorithm, developed and analysed in Zhu, Z., Wang, T. and Samworth, R. J. (2019) High-dimensional principal component analysis with heterogeneous missingness. <arXiv:1906.12125>.
Full dynamic system to describe and forecast the spread and the severity of a developing pandemic, based on available data. These data are number of infections, hospitalizations, deaths and recoveries notified each day. The system consists of three transitions, infection-infection, infection-hospital and hospital-death/recovery. The intensities of these transitions are dynamic and estimated using non-parametric local linear estimators. The package can be used to provide forecasts and survival indicators such as the median time spent in hospital and the probability that a patient who has been in hospital for a number of days can leave it alive. Methods are described in Gámiz, Mammen, Martà nez-Miranda, and Nielsen (2024) <doi:10.48550/arXiv.2308.09918> and <doi:10.48550/arXiv.2308.09919>.
This package provides functions to compute the potential model as defined by Stewart (1941) <doi:10.1126/science.93.2404.89>. Several options are available to customize the model, such as the possibility to fine-tune the distance friction functions or to use custom distance matrices. Some computations are parallelized to improve their efficiency.
Density, distribution function, quantile function and random generation for the family of power and reversal power distributions.