Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides beginner friendly framework to analyse population genetic data. Based on adegenet objects it uses knitr to create comprehensive reports on spatial genetic data. For detailed information how to use the package refer to the comprehensive tutorials or visit <http://www.popgenreport.org/>.
This package provides functions for testing phylogenetic niche conservatism, a key prerequisite in community assembly studies. The package integrates global functional trait data across major taxonomic groups and implements methods such as Pagel's Lambda and Blomberg's K to quantify phylogenetic signals in ecological communities. Methods are described in Münkemüller et al. (2012) <doi:10.1111/j.2041-210X.2012.00196.x>.
This package provides functions to calculate commonly used public health statistics and their confidence intervals using methods approved for use in the production of Public Health England indicators such as those presented via Fingertips (<https://fingertips.phe.org.uk/>). It provides functions for the generation of proportions, crude rates, means, directly standardised rates, indirectly standardised rates, standardised mortality ratios, slope and relative index of inequality and life expectancy. Statistical methods are referenced in the following publications. Breslow NE, Day NE (1987) <doi:10.1002/sim.4780080614>. Dobson et al (1991) <doi:10.1002/sim.4780100317>. Armitage P, Berry G (2002) <doi:10.1002/9780470773666>. Wilson EB. (1927) <doi:10.1080/01621459.1927.10502953>. Altman DG et al (2000, ISBN: 978-0-727-91375-3). Chiang CL. (1968, ISBN: 978-0-882-75200-6). Newell C. (1994, ISBN: 978-0-898-62451-9). Eayres DP, Williams ES (2004) <doi:10.1136/jech.2003.009654>. Silcocks PBS et al (2001) <doi:10.1136/jech.55.1.38>. Low and Low (2004) <doi:10.1093/pubmed/fdh175>. Fingertips Public Health Technical Guide: <https://fingertips.phe.org.uk/profile/guidance/supporting-information/PH-methods/>.
This package provides tools to show and draw image pixels using HTML widgets and Shiny applications. It can be used to visualize the MNIST dataset for handwritten digit recognition or to create new image recognition datasets.
Power and sample size calculation for testing fixed effect coefficients in multilevel linear mixed effect models with one or more than one independent populations. Laird, Nan M. and Ware, James H. (1982) <doi:10.2307/2529876>.
Analyzis and filtering of phylogenomics datasets. It takes an input either a collection of gene trees (then transformed to matrices) or directly a collection of gene matrices and performs an iterative process to identify what species in what genes are outliers, and whose elimination significantly improves the concordance between the input matrices. The methods builds upon the Distatis approach (Abdi et al. (2005) <doi:10.1101/2021.09.08.459421>), a generalization of classical multidimensional scaling to multiple distance matrices.
Algorithms to implement various Bayesian penalized survival regression models including: semiparametric proportional hazards models with lasso priors (Lee et al., Int J Biostat, 2011 <doi:10.2202/1557-4679.1301>) and three other shrinkage and group priors (Lee et al., Stat Anal Data Min, 2015 <doi:10.1002/sam.11266>); parametric accelerated failure time models with group/ordinary lasso prior (Lee et al. Comput Stat Data Anal, 2017 <doi:10.1016/j.csda.2017.02.014>).
In causal mediation analysis with multiple causally ordered mediators, a set of path-specific effects are identified under standard ignorability assumptions. This package implements an imputation approach to estimating these effects along with a set of bias formulas for conducting sensitivity analysis (Zhou and Yamamoto <doi:10.31235/osf.io/2rx6p>). It contains two main functions: paths() for estimating path-specific effects and sens() for conducting sensitivity analysis. Estimation uncertainty is quantified using the nonparametric bootstrap.
This package provides a graphical user interface for viewing and designing various types of graphs of the data. The graphs can be saved in different formats of an image.
Given a sample with additive measurement error, the package estimates the deconvolution density - that is, the density of the underlying distribution of the sample without measurement error. The method maximises the log-likelihood of the estimated density, plus a quadratic smoothness penalty. The distribution of the measurement error can be either a known family, or can be estimated from a "pure error" sample. For known error distributions, the package supports Normal, Laplace or Beta distributed error. For unknown error distribution, a pure error sample independent from the data is used.
Calculate sample size or power for hierarchical endpoints. The package can handle any type of outcomes (binary, continuous, count, ordinal, time-to-event) and any number of such endpoints. It allows users to calculate sample size with a given power or to calculate power with a given sample size for hypothesis testing based on win ratios, win odds, net benefit, or DOOR (desirability of outcome ranking) as treatment effect between two groups for hierarchical endpoints. The methods of this package are described further in the paper by Barnhart, H. X. et al. (2024, <doi:10.1080/19466315.2024.2365629>).
Set of functions for analysis of Principal Coordinates of Phylogenetic Structure (PCPS).
Evaluate the predictive performance of an existing (i.e. previously developed) prediction/ prognostic model given relevant information about the existing prediction model (e.g. coefficients) and a new dataset. Provides a range of model updating methods that help tailor the existing model to the new dataset; see Su et al. (2018) <doi:10.1177/0962280215626466>. Techniques to aggregate multiple existing prediction models on the new data are also provided; see Debray et al. (2014) <doi:10.1002/sim.6080> and Martin et al. (2018) <doi:10.1002/sim.7586>).
Use Phosphor icons in shiny applications or rmarkdown documents. Icons are available in 5 different weights and can be customized by setting color, size, orientation and more.
This package provides a power analysis tool for jointly testing the cause-1 cause-specific hazard and the any-cause hazard with competing risks data.
Package for processing downloaded MODIS Calibrated radiances Product HDF files. Specifically, MOD02 calibrated radiance product files, and the associated MOD03 geolocation files (for MODIS-TERRA). The package will be most effective if the user installs MRTSwath (MODIS Reprojection Tool for swath products; <https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath>, and adds the directory with the MRTSwath executable to the default R PATH by editing ~/.Rprofile.
Density, distribution function, quantile function, and random generation function based on Kittipong Klinjan,Tipat Sottiwan and Sirinapa Aryuyuen (2024)<DOI:10.28919/cmbn/8833>.
We included functions to assess the performance of risk models. The package contains functions for the various measures that are used in empirical studies, including univariate and multivariate odds ratios (OR) of the predictors, the c-statistic (or area under the receiver operating characteristic (ROC) curve (AUC)), Hosmer-Lemeshow goodness of fit test, reclassification table, net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Also included are functions to create plots, such as risk distributions, ROC curves, calibration plot, discrimination box plot and predictiveness curves. In addition to functions to assess the performance of risk models, the package includes functions to obtain weighted and unweighted risk scores as well as predicted risks using logistic regression analysis. These logistic regression functions are specifically written for models that include genetic variables, but they can also be applied to models that are based on non-genetic risk factors only. Finally, the package includes function to construct a simulated dataset with genotypes, genetic risks, and disease status for a hypothetical population, which is used for the evaluation of genetic risk models.
This package provides tools for the evaluation of interim analysis plans for sequentially monitored trials on a survival endpoint; tools to construct efficacy and futility boundaries, for deriving power of a sequential design at a specified alternative, template for evaluating the performance of candidate plans at a set of time varying alternatives. See Izmirlian, G. (2014) <doi:10.4310/SII.2014.v7.n1.a4>.
Seq2seq time-feature analysis based on variational model, with a wide range of distributions available for the latent variable.
Manipulation and analysis of phylogenetically simulated data sets and phylogenetically based analyses using GLS.
Bindings for additional regression models for use with the parsnip package, including ordinary and spare partial least squares models for regression and classification (Rohart et al (2017) <doi:10.1371/journal.pcbi.1005752>).
The base R data.frame, like any vector, is copied upon modification. This behavior is at odds with that of GUIs and interactive graphics. To rectify this, plumbr provides a mutable, dynamic tabular data model. Models may be chained together to form the complex plumbing necessary for sophisticated graphical interfaces. Also included is a general framework for linking datasets; an typical use case would be a linked brush.
Reads/write binary genotype file compatible with PLINK <https://www.cog-genomics.org/plink/1.9/input#bed> into/from a R matrix; traverse genotype data one windows of variants at a time, like apply() or a for loop; reads/writes genotype relatedness/kinship matrices created by PLINK <https://www.cog-genomics.org/plink/1.9/distance#make_rel> or GCTA <https://cnsgenomics.com/software/gcta/#MakingaGRM> into/from a R square matrix. It is best used for bringing data produced by PLINK and GCTA into R workflow.