Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a framework for building enterprise, scalable and UI-standardized shiny applications. It brings enhanced features such as bootstrap v4 <https://getbootstrap.com/docs/4.0/getting-started/introduction/>, additional and enhanced shiny modules, customizable UI features, as well as an enhanced application file organization paradigm. This update allows developers to harness the ability to build powerful applications and enriches the shiny developers experience when building and maintaining applications.
Plots matrices of colours as grids of coloured squares - aka heatmaps, guaranteeing legible row and column names, without transformation of values, without re-ordering rows or columns, and without dendrograms.
Access a variety of PubMed data through a single, user-friendly interface, including abstracts <https://pubmed.ncbi.nlm.nih.gov/>, bibliometrics from iCite <https://icite.od.nih.gov/>, pubtations from PubTator3 <https://www.ncbi.nlm.nih.gov/research/pubtator3/>, and full-text records from PMC <https://www.ncbi.nlm.nih.gov/pmc/>.
This version of the permutational algorithm generates a dataset in which event and censoring times are conditional on an user-specified list of covariates, some or all of which are time-dependent.
Location- and scale-invariant Box-Cox and Yeo-Johnson power transformations allow for transforming variables with distributions distant from 0 to normality. Transformers are implemented as S4 objects. These allow for transforming new instances to normality after optimising fitting parameters on other data. A test for central normality allows for rejecting transformations that fail to produce a suitably normal distribution, independent of sample number.
This package provides functions to get prediction intervals and prediction points of future observations from mixture distributions like gamma, beta, Weibull and normal.
This package performs minimax linkage hierarchical clustering. Every cluster has an associated prototype element that represents that cluster as described in Bien, J., and Tibshirani, R. (2011), "Hierarchical Clustering with Prototypes via Minimax Linkage," The Journal of the American Statistical Association, 106(495), 1075-1084.
Efficient calculation of pseudo-ranks and (pseudo)-rank based test statistics. In case of equal sample sizes, pseudo-ranks and mid-ranks are equal. When used for inference mid-ranks may lead to paradoxical results. Pseudo-ranks are in general not affected by such a problem. See Happ et al. (2020, <doi:10.18637/jss.v095.c01>) for details.
The plotcli package provides terminal-based plotting in R. It supports colored scatter plots, line plots, bar plots, boxplots, histograms, density plots, and more. The ggplotcli() function is a universal converter that renders any ggplot2 plot in the terminal using Unicode Braille characters or ASCII. Features include support for 15+ geom types, faceting (facet_wrap/facet_grid), automatic theme detection, legends, optimized color mapping, and multiple canvas types.
Bland (2009) <doi:10.1136/bmj.b3985> recommended to base study sizes on the width of the confidence interval rather the power of a statistical test. The goal of presize is to provide functions for such precision based sample size calculations. For a given sample size, the functions will return the precision (width of the confidence interval), and vice versa.
The first goal of this package is to provide a multitude of tree models, i.e., functions that generate rooted binary trees with a given number of leaves. Second, the package allows for an easy evaluation and comparison of tree shape statistics by estimating their power to differentiate between different tree models. Please note that this R package was developed alongside the manuscript "Tree balance in phylogenetic models" by S. J. Kersting, K. Wicke, and M. Fischer (2024) <doi:10.48550/arXiv.2406.05185>, which provides further background and the respective mathematical definitions. This project was supported by the project ArtIGROW, which is a part of the WIR!-Alliance ArtIFARM â Artificial Intelligence in Farming funded by the German Federal Ministry of Education and Research (No. 03WIR4805).
Calculate POTH for treatment hierarchies from frequentist and Bayesian network meta-analysis. POTH quantifies the certainty in a treatment hierarchy. Subset POTH, POTH residuals, and best k treatments POTH can also be calculated to improve interpretation of treatment hierarchies.
Stochastic block model used for dynamic graphs represented by Poisson processes. To model recurrent interaction events in continuous time, an extension of the stochastic block model is proposed where every individual belongs to a latent group and interactions between two individuals follow a conditional inhomogeneous Poisson process with intensity driven by the individualsâ latent groups. The model is shown to be identifiable and its estimation is based on a semiparametric variational expectation-maximization algorithm. Two versions of the method are developed, using either a nonparametric histogram approach (with an adaptive choice of the partition size) or kernel intensity estimators. The number of latent groups can be selected by an integrated classification likelihood criterion. Y. Baraud and L. Birgé (2009). <doi:10.1007/s00440-007-0126-6>. C. Biernacki, G. Celeux and G. Govaert (2000). <doi:10.1109/34.865189>. M. Corneli, P. Latouche and F. Rossi (2016). <doi:10.1016/j.neucom.2016.02.031>. J.-J. Daudin, F. Picard and S. Robin (2008). <doi:10.1007/s11222-007-9046-7>. A. P. Dempster, N. M. Laird and D. B. Rubin (1977). <http://www.jstor.org/stable/2984875>. G. Grégoire (1993). <http://www.jstor.org/stable/4616289>. L. Hubert and P. Arabie (1985). <doi:10.1007/BF01908075>. M. Jordan, Z. Ghahramani, T. Jaakkola and L. Saul (1999). <doi:10.1023/A:1007665907178>. C. Matias, T. Rebafka and F. Villers (2018). <doi:10.1093/biomet/asy016>. C. Matias and S. Robin (2014). <doi:10.1051/proc/201447004>. H. Ramlau-Hansen (1983). <doi:10.1214/aos/1176346152>. P. Reynaud-Bouret (2006). <doi:10.3150/bj/1155735930>.
Calculates the periodogram of a time series, maximum-likelihood fits an Ornstein-Uhlenbeck state space (OUSS) null model and evaluates the statistical significance of periodogram peaks against the OUSS null hypothesis. The OUSS is a parsimonious model for stochastically fluctuating variables with linear stabilizing forces, subject to uncorrelated measurement errors. Contrary to the classical white noise null model for detecting cyclicity, the OUSS model can account for temporal correlations typically occurring in ecological and geological time series. Citation: Louca, Stilianos and Doebeli, Michael (2015) <doi:10.1890/14-0126.1>.
Leading/lagging a panel, creating dummy variables, taking panel differences, looking for panel autocorrelations, and more. Implemented via a data.table back end.
Collection of functions for working with multi-well microtitre plates, mainly 96, 384 and 1536 well plates.
The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional elements such as the domain and the mutation site is completed.
An implementation of the van Westendorp Price Sensitivity Meter in R, which is a survey-based approach to analyze consumer price preferences and sensitivity (van Westendorp 1976, isbn:9789283100386).
Design and analyze two-stage randomized trials with a continuous outcome measure. The package contains functions to compute the required sample size needed to detect a given preference, treatment, and selection effect; alternatively, the package contains functions that can report the study power given a fixed sample size. Finally, analysis functions are provided to test each effect using either summary data (i.e. means, variances) or raw study data <doi:10.18637/jss.v094.c02>.
Efficient algorithm for estimating piecewise exponential hazard models for right-censored data, and is useful for reliable power calculation, study design, and event/timeline prediction for study monitoring.
Smooths the process of working with country names and codes via powerful parsing, standardization, and conversion utilities arranged in a simple, consistent API. Country name formats include multiple sources including the Unicode Common Locale Data Repository (CLDR, <http://cldr.unicode.org/>) common-sense standardized names in hundreds of languages.
Calculates the percentage coefficient of variation (CV) for mass spectrometry-based proteomic data. The CV can be calculated with the traditional formula for raw (non log transformed) intensity data, or log transformed data.
Bindings for Poisson regression models for use with the parsnip package. Models include simple generalized linear models, Bayesian models, and zero-inflated Poisson models (Zeileis, Kleiber, and Jackman (2008) <doi:10.18637/jss.v027.i08>).
This package provides a collection of functions for modelling mutations in pedigrees with marker data, as used e.g. in likelihood computations with microsatellite data. Implemented models include equal, proportional and stepwise models, as well as random models for experimental work, and custom models allowing the user to apply any valid mutation matrix. Allele lumping is done following the lumpability criteria of Kemeny and Snell (1976), ISBN:0387901922.